精英家教网 > 高中数学 > 题目详情

如图,已知DE⊥平面ACD,DE//AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点。

(I)求证:AF//平面BCE;
(II)求证:平面BCE⊥平面CDE;
(III)求平面BCE与平面ACD所成锐二面角的大小。

(I)(II)见试题解析;(III)

解析试题分析:(I)要证明线面垂直,就是要在平面BCE中找一条与AF垂直的直线,这条直线容易看出是平面BAF与平面BCE的交线,当然根据已知条件,辅助线可直接取CE中点P,直线BP就是我们要找的平等线;(II)本证面面垂直,先要证线面垂直,先看题中有没有已知的垂直关系,发现有直线AF与平面CDE垂直,而在(I)的证明中有BP//AF,BP就是我们要找的线面垂直中的线;(III)平面BCE与平面ACD有一个公共点C,依据二面角的定义,要选作出二面角的棱,然后作出平面角,才能求出二面角的大小,但由(I)题中有两两垂直的三条直线FA,FP,AD,故我们可建立空间直角坐标系,通过空间向量来求二面角大小.
试题解析:(I)解:取CE中点P,连结FP、BP,∵F为CD的中点,
∴FP//DE,且FP= 又AB//DE,且AB=
∴AB//FP,且AB=FP, ∴ABPF为平行四边形,∴AF//BP。
又∵AF平面BCE,BP平面BCE, ∴AF//平面BCE。             3分
(II)∵△ACD为正三角形,∴AF⊥CD。∵AB⊥平面ACD,DE//AB,
∴DE⊥平面ACD,又AF平面ACD,∴DE⊥AF。又AF⊥CD,CD∩DE=D,
∴AF⊥平面CDE。又BP//AF,∴BP⊥平面CDE。
又∵BP平面BCE,∴平面BCE⊥平面CDE。                7分
(III)由(II),以F为坐标原点,FA,FD,FP所在的直线分别为x,y,z轴(如图),建立空间直角坐标系F—xyz.设AC=2,则C(0,—1,0),


显然,为平面ACD的法向量。
设平面BCE与平面ACD所成锐二面角为

即平面BCE与平面ACD所成锐二面角为45°。                13分
考点:(I)线面平行;(II)面面垂直;(III)二面角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

已知是三条不同的直线,是三个不同的平面,下列命题:
①若,则;          ②若,则
③若,则;  ④若,则.
其中真命题是_      __.(写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图,直三棱柱ABC­A1B1C1中,AB=AC=1,AA1=2,∠B1A1C1=90°,D为BB1的中点,则异面直线C1D与A1C所成角的余弦值为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如右图.M是棱长为2cm的正方体ABCD-A1B1C1D1的棱CC1的中点,沿正方体表面从点A到点M的最短路程是         cm.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

下列四个正方体图形中,为 正方体的两个顶点,分别为其所在棱的中点,能得出的图形的序号是______.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图,在正方体ABCD-A1B1C1D1中,P为对角线BD1的三等分点,则P到各顶点的距离的不同取值有       个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图所示,正方形ABCD中,E、F分别是AB、AD的中点,将此正方形沿EF折成直二面角后,异面直线AF与BE所成角的余弦值为             .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

与棱长为1的正方体的一条棱平行的截面中,面积最大的截面面积为     

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,则直线EF与正方体的六个面所在的平面相交的平面个数为________.

查看答案和解析>>

同步练习册答案