精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=tx,(x∈R).
(1)若t=ax+b,a,b∈R,且﹣1≤f(﹣1)≤2,2≤f(1)≤4,求点(a,b)的集合表示的平面区域的面积;
(2)若t=2+ ,(x<1且x≠0),求函数f(x)的最大值;
(3)若t=x﹣a﹣3(a∈R),不等式b2+c2﹣bc﹣3b﹣1≤f(x)≤a+4(b,c∈R)的解集为[﹣1,5],求b,c的值.

【答案】
(1)解:当t=ax+b时,f(x)=ax2+bx,

由﹣1≤f(﹣1)≤2,2≤f(1)≤4,

可得﹣1≤a﹣b≤2,2≤a+b≤4,

由两平行直线x﹣y=2和x﹣y=﹣1的距离为

两平行直线x+y=2和x+y=4的距离为

可得点(a,b)的集合表示的平面区域(矩形)的面积为 × =3


(2)解:若t=2+ ,(x<1且x≠0),

则f(x)=2x+ (x<1且x≠0),

由2x+ =[2(x﹣1)+ ]+2=﹣[2(1﹣x)+ ]+2

≤﹣2 +2=2﹣2

当且仅当2(1﹣x)= ,即x=1﹣ 时,等号成立,

则函数的最大值为2﹣2


(3)解:若t=x﹣a﹣3(a∈R),则f(x)=x2﹣(a+3)x,

f(x)≤a+4(b,c∈R)的解集为[﹣1,5],

即x2﹣(a+3)x﹣(a+4)≤0的解集为[﹣1,5],

即﹣1,5为方程x2﹣(a+3)x﹣(a+4)=0的两根,

可得﹣1+5=a+3,﹣1×5=﹣(a+4),

解得a=1;

再由不等式b2+c2﹣bc﹣3b﹣1≤f(x)≤a+4(b,c∈R)的解集为[﹣1,5],

可得b2+c2﹣bc﹣3b﹣1≤f(x)的最小值,

而f(x)=x2﹣4x=(x﹣2)2﹣4的最小值为﹣4,

则b2+c2﹣bc﹣3b﹣1≤﹣4,

即b2+c2﹣bc﹣3b+3≤0,

记g(c)=c2﹣bc+b2﹣3b+3,

则△=b2﹣4(b2﹣3b+3)≥0,

即﹣3(b﹣2)2≥0,但﹣3(b﹣2)2≤0,

则b=2;

即有4+c2﹣2c﹣6+3≤0,

即c2﹣2c+1≤0,即(c﹣1)2≤0,

但(c﹣1)2≥0,

即c=1


【解析】(1)由题意可得﹣1≤a﹣b≤2,2≤a+b≤4,运用点(a,b)的集合表示的平面区域为矩形,由平行直线间的距离公式,即可得到所求面积;(2)运用基本不等式,注意满足的条件:一正二定三等,即可得到所求最大值;(3)运用二次不等式的解集,可得对应方程的解,运用韦达定理可得a=1,再由不等式b2+c2﹣bc﹣3b﹣1≤f(x)的最小值,结合判别式非负,可得b=2,进而得到c的不等式,求得c=1.
【考点精析】关于本题考查的函数的最值及其几何意义,需要了解利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数集A={a1 , a2…an}(0≤a1<a2…<an , n≥2)具有性质P;对任意的 i,j(1≤i≤j≤n),ai+aj与aj﹣ai两数中至少有一个属于A.
(1)分别判断数集{0,1,3,4}与{0,2,3,6}是否具有性质P,并说明理由;
(2)证明:a1=0,且nan=2(a1+a2+a+..+an
(3)当n=5时若 a2=2,求集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)是定义在(0,+∞)上的函数,且对任意的正实数x1 , x2均有:(x1﹣x2)[f(x1)﹣f(x2)]>0,则不等式f(x)﹣f(8x﹣16)>0的解集是(
A.(0,+∞)
B.(0,2)
C.(2,+∞)
D.(2,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求适合下列条件的圆锥曲线的标准方程:
(1)焦点坐标为( ,0),准线方程为x= 的椭圆;
(2)过点( ,2),渐近线方程为y=±2x的双曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017江西4月质检】已知椭圆的离心率为,且过点.

(1)求椭圆的方程;

(2)过点且斜率大于0的直线与椭圆相交于点,直线轴相交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax﹣1(a>0,且a≠1),当x∈(0,+∞)时,f(x)>0,且函数g(x)=f(x+1)﹣4的图象不过第二象限,则a的取值范围是( )
A.(1,+∞)
B.
C.(1,3]
D.(1,5]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017广东佛山二模】某保险公司针对企业职工推出一款意外险产品,每年每人只要交少量保费,发生意外后可一次性获赔50万元.保险公司把职工从事的所有岗位共分为三类工种,根据历史数据统计出三类工种的每赔付频率如下表并以此估计赔付概率.

根据规定,该产品各工种保单的期望利润都不得超过保费的20%,试分别确定各类工种每张保单保费的上限;

某企业共有职工20000人,从事三类工种的人数分布比例如图,老板准备为全体职工每人购买一份此种保险,并以中计算的各类保险上限购买,试估计保险公司在这宗交易中的期望利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017福建三明5月质检】某市政府为了引导居民合理用水,决定全面实施阶梯水价,阶梯水价原则上以住宅一套住宅为一户的月用水量为基准定价:若用水量不超过12吨时,按4元/吨计算水费;若用水量超过12吨且不超过14吨时,超过12吨部分按6.60元/吨计算水费;若用水量超过14吨时,超过14吨部分按7.80元/吨计算水费.为了了解全市居民月用水量的分布情况,通过抽样,获得了100户居民的月用水量单位:吨,将数据按照分成8组,制成了如图1所示的频率分布直方图.

假设用抽到的100户居民月用水量作为样本估计全市的居民用水情况.

现从全市居民中依次随机抽取5户,求这5户居民恰好3户居民的月用水用量都超过12吨的概率;

试估计全市居民用水价格的期望精确到0.01

如图2是该市居民李某2016年1~6月份的月用水费与月份的散点图,其拟合的线性回归方程是.若李某2016年1~7月份水费总支出为294.6元,试估计李某7月份的用水吨数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,AB=1,AC=AA1= , ∠ABC=60°.
(1)证明:AB⊥A1C;
(2)求二面角A﹣A1C﹣B的大小.

查看答案和解析>>

同步练习册答案