精英家教网 > 高中数学 > 题目详情
5.已知x,y满足$\left\{\begin{array}{l}{-x+y-2≥0}\\{x+y-4≤0}\\{x-3y+3≤0}\end{array}\right.$,则z=-3x+y的最小值为0.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{-x+y-2≥0}\\{x+y-4≤0}\\{x-3y+3≤0}\end{array}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{-x+y-2=0}\\{x+y-4=0}\end{array}\right.$,解得B(1,3),
化目标函数z=-3x+y为y=3x+z,
由图可知,当直线y=3x+z过点B时,直线在y轴上的截距最小,z有最小值为-3×1+3=0.
故答案为:0.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图是某几何体的正视图和俯视图,试分析此几何体的结构特征,并画出其侧视图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{3x}{2x+3}$,数列{an}满足a1=1,an+1=f(an),n∈N*
(1)求数列{an}的通项公式;
(2)令Tn=a1a2+a2a3+a3a4+a4a5+…+a2n-1a2n+a2na2n+1,求Tn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=($\frac{1}{2}$)${\;}^{{x}^{2}+2x}$的值域是(  )
A.(0,+∞)B.(2,+∞)C.(0,2)D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线l经过点P(2,1),与直线x+2y-3=0和2x+y-6=0分别交于A,B两点,而且线段AB被点P平分.
(1)求直线1的方程;
(2)若圆C的圆心在l上,与直线4x+3y+14=0相切,且直线3x+4y+10=0被此圆截得弦长为6,试求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)在定义域R上是奇函数,且在(0,+∞)上是减函数,f(2)=0,则函数的零点是-2,0,2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设x,y满足y=-x+1,则x2+y2的最小值为(  )
A.1B.$\frac{3}{4}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=log${\;}_{\frac{1}{a}}$(2-x)在其定义域内单调递增,求函数g(x)=loga(1-x2)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.直线xsinα-y+1=0的倾斜角的变化范围是(  )
A.(0,$\frac{π}{2}$)B.(0,π)C.[-$\frac{π}{4}$,$\frac{π}{4}$]D.[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π)

查看答案和解析>>

同步练习册答案