试题分析:(1)求
的极值,就是先求出
,解方程
,此方程的解把函数的定义域分成若干个区间,我们再确定在每个区间里
的符号,从而得出极大值或极小值;(2)此总是首先是对不等式
恒成立的转化,由(1)可确定
在
上是增函数,同样的方法(导数法)可确定函数
在
上也是增函数,不妨设
,这样题设绝对值不等式可变为
,整理为
,由此函数
在区间
上为减函数,则
在(3,4)上恒成立,要求
的取值范围.采取分离参数法得
恒成立,于是问题转化为求
在
上的最大值;(3)由于
的任意性,我们可先求出
在
上的值域
,题设“在区间
上总存在
,使得
成立”,转化为函数
在区间
上不是单调函数,极值点为
(
),其次
,极小值
,最后还要证明在
上,存在
,使
,由此可求出
的范围.
试题解析:(1)
,令
,得
x=1. 1分
列表如下:
x
| (-∞,1)
| 1
| (1,+∞)
|
| +
| 0
| -
|
g(x)
| ↗
| 极大值
| ↘
|
∵
g(1)=1,∴
y=
的极大值为1,无极小值. 3分
(2)当
时,
,
.
∵
在
恒成立,∴
在
上为增函数. 4分
设
,∵
>0在
恒成立,
∴
在
上为增函数. 5分
设
,则
等价于
,
即
.
设
,则
u(
x)在
为减函数.
∴
在(3,4)上恒成立. 6分
∴
恒成立.
设
,∵
=
,
xÎ[3,4],
∴
,∴
<0,
为减函数.
∴
在[3,4]上的最大值为
v(3)=3-
. 8分
∴
a≥3-
,∴
的最小值为3-
. 9分
(3)由(1)知
在
上的值域为
. 10分
∵
,
,
当
时,
在
为减函数,不合题意. 11分
当
时,
,由题意知
在
不单调,
所以
,即
.① 12分
此时
在
上递减,在
上递增,
∴
,即
,解得
.②
由①②,得
. 13分
∵
,∴
成立. 14分
下证存在
,使得
≥1.
取
,先证
,即证
.③
设
,则
在
时恒成立.
∴
在
时为增函数.∴
,∴③成立.
再证
≥1.
∵
,∴
时,命题成立.
综上所述,
的取值范围为
. 16分