精英家教网 > 高中数学 > 题目详情
已知函数y=loga(ax2-x)在区间[2,4]上是增函数,则实数a的取值范围是
 
分析:先根据复合函数的单调性确定函数g(x)=ax2-x的单调性,进而分a>1和0<a<1两种情况讨论.
解答:解:令g(x)=ax2-x(a>0,且a≠1),
当a>1时,g(x)在[2,4]上单调递增,∴
g(2)>0
g(4)>0
1
2a
≤2
∴a>1
当0<a<1时,g(x)在[2,4]上单调递减,∴
g(2)>0
g(4)>0
1
2a
≥4
∴a∈∅
综上所述:a>1
故答案为:(1,+∞)
点评:本题主要考查复合函数的单调性和对数函数的真数一定大于0.属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

7、已知函数y=loga(x+b)的图象如图所示,则a、b的取值范围分别是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=loga(ax2-x)在区间[2,4]上是增函数,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=loga(x+4)-1(a>0,且a≠1)的图象恒过定点A,若点A在直线mx+ny+3=0上,其中m>0,n>0,则
1
m
+
3
n
的最小值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=loga(3a-1)的值恒为正数,则a的取值范围是
1
3
2
3
)∪(1,+∞)
1
3
2
3
)∪(1,+∞)

查看答案和解析>>

同步练习册答案