精英家教网 > 高中数学 > 题目详情
2.设数列{an}的前n项和为Sn,且${S_n}=2-{(\frac{1}{2})^{n-1}},n∈{N^*}$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列bn=$\frac{n}{2}{a_n}$,求数列{bn}的前n项和Tn

分析 (Ⅰ)运用n=1时,a1=S1,n≥2时,an=Sn-Sn-1,计算即可得到所求通项;
(Ⅱ)求得bn=$\frac{n}{2}{a_n}$=n•($\frac{1}{2}$)n,由数列的求和方法:错位相减法,结合等比数列的求和公式,计算即可得到所求.

解答 解:(Ⅰ)n=1时,a1=S1=1,
n≥2时,an=Sn-Sn-1=2-($\frac{1}{2}$)n-1-2+($\frac{1}{2}$)n-2=($\frac{1}{2}$)n-1
此式对于n=1也成立.则有an=($\frac{1}{2}$)n-1
(Ⅱ)设数列bn=$\frac{n}{2}{a_n}$=n•($\frac{1}{2}$)n
前n项和Tn=1•$\frac{1}{2}$+2•$\frac{1}{4}$+3•$\frac{1}{8}$+…+n•($\frac{1}{2}$)n
$\frac{1}{2}$Tn=1•$\frac{1}{4}$+2•$\frac{1}{8}$+3•$\frac{1}{16}$+…+n•($\frac{1}{2}$)n+1
两式相减可得,$\frac{1}{2}$Tn=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{8}$+…+($\frac{1}{2}$)n-n•($\frac{1}{2}$)n+1
=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-n•($\frac{1}{2}$)n+1
化简可得前n项和Tn=2-$\frac{n+2}{{2}^{n}}$.

点评 本题考查数列的通项的求法,注意数列的通项与前n项和的关系,考查数列的求和方法:错位相减法,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知p:x2-2x-3<0,若-a<x-1<a是p的一个必要条件但不是充分条件,求使a>b恒成立的实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=xsinx,记$m=f(-\frac{1}{2})$,$n=f(\frac{π}{3})$,则下列关系正确的是(  )
A.m<0<nB.0<n<mC.0<m<nD.n<m<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知集合A={ x|x<1 },B={-1,0,1,2 },则A∩B={-1,0}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.直线x=0被圆x2+y2-6x-2y-15=0所截得的弦长为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.过点P(1,2)的直线l与圆C:x2+(y-1)2=4交于A,B两点,当∠ACB最小时,直线L的方程为(  )
A.2x-y=0B.x-y+1=0C.x+y-3=0D.x=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数$f(x)=\frac{1}{2}{x^2}-2ax+(2a-1)lnx$,其中a∈R.
(Ⅰ)a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)讨论函数y=f(x)的单调性;
(Ⅲ)当$a>\frac{1}{2}$时,证明对?x∈(0,2),都有f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知数列{an}的通项公式是an=n2+kn+2,若对所有的n∈N*,都有an+1>an成立,则实数k的取值范围是(  )
A.(0,+∞)B.(-1,+∞)C.(-2,+∞)D.(-3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.对于数列{an},若?m,n∈N*(m≠n),均有$\frac{{a}_{m}-{a}_{n}}{m-n}≥t$(t为常数),则称数列{an}具有性质P(t)
(1)若数列{an}的通项公式为an=n2,具有性质P(t),则t的最大值为3
(2)若数列{an}的通项公式为an=n2-$\frac{a}{n}$,具有性质P(7),则实数a的取值范围是a≥8.

查看答案和解析>>

同步练习册答案