精英家教网 > 高中数学 > 题目详情
P是双曲线上的点,F1、F2是其焦点,双曲线的离心率是,且∠F1PF2=90,若△F1PF2的面积为9,则a+b的值(a>0,b>0)等于( )
A.4
B.7
C.6
D.5
【答案】分析:根据双曲线的离心率是,且∠F1PF2=90°,若△F1PF2的面积为9,结合双曲线的定义,构建方程组,即可求得几何量,从而求出a+b的值.
解答:解:由题意,不妨设点P是右支上的一点,|PF1|=m,|PF2|=n,则
,∴a=4,c=5

∴a+b=7
故选B.
点评:本题以双曲线的性质为载体,考查双曲线的标准方程,解题的关键是利用焦点三角形,利用双曲线的定义构建方程组.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线
x2
4
-
y2
b2
=1(b∈N*) 的两个焦点为F1、F2,P是双曲线上的一点,且满足|PF1|-|PF2|=|F1F2|2,|PF2|<4,
(I)求b的值;
(II)抛物线y2=2px(p>0)的焦点F与该双曲线的右顶点重合,斜率为1的直线经过点F与该抛物线交于A、B两点,求弦长|AB|.

查看答案和解析>>

科目:高中数学 来源:门头沟区一模 题型:解答题

已知双曲线
x2
4
-
y2
b2
=1(b∈N*) 的两个焦点为F1、F2,P是双曲线上的一点,且满足|PF1|-|PF2|=|F1F2|2,|PF2|<4,
(I)求b的值;
(II)抛物线y2=2px(p>0)的焦点F与该双曲线的右顶点重合,斜率为1的直线经过点F与该抛物线交于A、B两点,求弦长|AB|.

查看答案和解析>>

科目:高中数学 来源:2013年高考百天仿真冲刺数学试卷4(文科)(解析版) 题型:解答题

已知双曲线-=1(b∈N*) 的两个焦点为F1、F2,P是双曲线上的一点,且满足|PF1|-|PF2|=|F1F2|2,|PF2|<4,
(I)求b的值;
(II)抛物线y2=2px(p>0)的焦点F与该双曲线的右顶点重合,斜率为1的直线经过点F与该抛物线交于A、B两点,求弦长|AB|.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省衢州二中高三(下)第一次综合练习数学试卷(理科)(解析版) 题型:填空题

已知M是双曲线上的点,以M为圆心的圆与x轴相切于双曲线的焦点F,圆M与y轴相交于P,Q两点.若△PQM为锐角三角形,则该双曲线的离心率的取值范围为   

查看答案和解析>>

科目:高中数学 来源:2011年北京市门头沟区高考数学一模试卷(文科)(解析版) 题型:解答题

已知双曲线-=1(b∈N*) 的两个焦点为F1、F2,P是双曲线上的一点,且满足|PF1|-|PF2|=|F1F2|2,|PF2|<4,
(I)求b的值;
(II)抛物线y2=2px(p>0)的焦点F与该双曲线的右顶点重合,斜率为1的直线经过点F与该抛物线交于A、B两点,求弦长|AB|.

查看答案和解析>>

同步练习册答案