精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)当时,求的单调区间;

2)令,区间 为自然对数的底数。

)若函数在区间上有两个极值,求实数的取值范围;

)设函数在区间上的两个极值分别为

求证: .

【答案】(1)增区间,减区间,(2)详见解析

【解析】试题分析:(1)求导写出单调区间;(2)(ⅰ)函数 在区间D上有两个极值,等价于 上有两个不同的零点,令 ,得 通过求导分析得 的范围为(ⅱ) 由分式恒等变换得要证明 ,只需证 ,即证

,通过求导得到 恒成立,得证。

试题解析:

(1)时,

所以

,则 所以的单调区增区间为

所以的单调区增区间为

(2)(ⅰ)因为

所以

若函数 在区间D上有两个极值,等价于 上有两个不同的零点,

,得

,令

大于0

0

小于0

0

所以 的范围为

(ⅱ)(ⅰ)知,若函数在区间D上有两个极值分别为 ,不妨设 ,则

所以

要证 ,只需证 ,即证

,即证 ,即证

,因为

所以 上单调增, ,所以

所以 ,得证。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)=xlnx,g(x)=﹣x2+ax﹣3. (Ⅰ)求函数f(x)在[t,t+1](t>0)上的最小值;
(Ⅱ)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;
(Ⅲ)证明:对一切x∈(0,+∞),都有lnx> 成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,

①求曲线在点处的切线方程;

②求函数在区间上的值域.

(2)对于任意,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A、B、C为三个锐角,且A+B+C=π,若向量 =(2sinA﹣2,cosA+sinA)与向量 =(cosA﹣sinA,1+sinA)是共线向量. (Ⅰ)求角A;
(Ⅱ)求函数y=2sin2B+cos 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义平面向量之间的一种运算“⊙”如下:对任意的 ,令 ,下面说法错误的是(
A.若 共线,则 =0
B. =
C.对任意的λ∈R,有 =
D.( 2+( 2=| |2| |2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线xy10被圆(x1)2y23截得的弦长等于(  )

A. B. 2

C. 2 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点P、Q分别在直线3x﹣y+5=0和3x﹣y﹣13=0上运动,线段PQ中点为M(x0 , y0),且x0+y0>4,则 的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.

(1)证明:BE∥平面ADP;
(2)求直线BE与平面PDB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.

(1)证明:PB∥平面AEC;
(2)设AP=1,AD= ,三棱锥P﹣ABD的体积V= ,求A到平面PBC的距离.

查看答案和解析>>

同步练习册答案