精英家教网 > 高中数学 > 题目详情
甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( )
A.36种
B.48种
C.96种
D.192种
【答案】分析:根据题意,先分析甲,有C42种,再分析乙、丙,有C43•C43种,进而由乘法原理计算可得答案.
解答:解;根据题意,甲、乙、丙3位同学选修课程,
从4门课程中,甲选修2门,有C42种,
乙、丙各选修3门,有C43•C43种,
则不同的选修方案共有C42•C43•C43=96种,
故选C.
点评:本题考查组合数公式的运用,解题分析时注意事件之间的关系,选有择特殊要求的事件下手.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

高二下学期,学校计划为同学们提供A.B.C.D四门方向不同的数学选修课,现在甲、乙、丙三位同学要从中任选一门学习(受条件限制,不允许多选,也不允许不选).
(I)求3位同学中,选择3门不同方向选修的概率;
(II)求恰有2门选修没有被3位同学选中的概率;
(III)求3位同学中,选择A选修课人数ξ的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

高二下学期,学校计划为同学们提供A、B、C、D四门方向不同的数学选修课,现在甲、乙、丙三位同学要从中任选一门学习(受条件限制,不允许多选,也不允许不选).
(I)求3位同学中,选择3门不同方向选修的概率;
(II)求恰有2门选修没有被3位同学选中的概率;
(III)求3位同学中,至少有2个选择A选修课的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

高二下学期,学校计划为同学们提供A、B、C、D四门方向不同的数学选修课,现在甲、乙、丙三位同学要从中任选一门学习(受条件限制,不允许多选,也不允许不选).
(I)求3位同学中,选择3门不同方向选修的概率;
(II)求恰有2门选修没有被3位同学选中的概率;
(III)求3位同学中,至少有2个选择A选修课的概率.

查看答案和解析>>

科目:高中数学 来源:河南模拟 题型:解答题

高二下学期,学校计划为同学们提供A.B.C.D四门方向不同的数学选修课,现在甲、乙、丙三位同学要从中任选一门学习(受条件限制,不允许多选,也不允许不选).
(I)求3位同学中,选择3门不同方向选修的概率;
(II)求恰有2门选修没有被3位同学选中的概率;
(III)求3位同学中,选择A选修课人数ξ的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源:2010年河南省新乡、许昌、平顶山高考数学三模试卷(理科)(必修+选修2)(解析版) 题型:解答题

高二下学期,学校计划为同学们提供A.B.C.D四门方向不同的数学选修课,现在甲、乙、丙三位同学要从中任选一门学习(受条件限制,不允许多选,也不允许不选).
(I)求3位同学中,选择3门不同方向选修的概率;
(II)求恰有2门选修没有被3位同学选中的概率;
(III)求3位同学中,选择A选修课人数ξ的分布列与数学期望.

查看答案和解析>>

同步练习册答案