【题目】如图,半径为的圆形纸板内有一个相同圆心的半径为的小圆,现将半径为的一枚硬币抛到此纸板上,使整块硬币完全随机落在纸板内,则硬币与小圆无公共点的概率为( )
A. B. C. D.
【答案】D
【解析】由题意可得,硬币要落在纸板内,硬币圆心距离纸板圆心的距离应该小于4.硬币与小圆无公共点,硬币圆心距离小圆圆心要大于2,先求出硬币落在纸板上的面积,然后再求解硬币落下后与小圆没交点的区域的面积,代入古典概率的计算公式可求
解答:解:记“硬币落下后与小圆无公共点”为事件A
硬币要落在纸板内,硬币圆心距离纸板圆心的距离应该小于4,其面积为16π
无公共点也就意味着,硬币的圆心与纸板的圆心相距超过2cm
以纸板的圆心为圆心,作一个半径2cm的圆,硬币的圆心在此圆外面,则硬币与半径为1cm的小圆无公共点
所以有公共点的概率为4/16
无公共点的概率为P(A)=1-4/16=3/4
故答案为D
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中, 平面,四边形是菱形, , ,且, 交于点, 是上任意一点.
(1)求证: ;
(2)已知二面角的余弦值为,若为的中点,求与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校艺术节对同一类的, , , 四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品获奖情况预测如下:
甲说:“或作品获得一等奖”
乙说:“作品获得一等奖”
丙说:“, 两项作品未获得一等奖”
丁说:“作品获得一等奖”.
若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂生产一种仪器的元件,由于受生产能力和技术水平的限制,会产生一些次品,根据经验知道,其次品率P与日产量x(万件)之间大体满足关系: .(注:次品率=次品数/生产量,如P=0.1表示每生产10件产品,有1件为次品,其余为合格品).已知每生产1万件合格的元件可以盈利2万元,但每生产1万件次品将亏损1万元,故厂方希望定出合适的日产量.
(1)试将生产这种仪器的元件每天的盈利额T(万元)表示为日产量x(万件)的函数;
(2)当日产量x为多少时,可获得最大利润?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=Asin(ωx+φ)(A>0,|φ|< )其中的图象如图所示,为了得到g(x)=cos(2x﹣ )的图象,只需将f(x)的图象( )
A.向左平移 个单位
B.向右平移 个单位
C.向左平移 个单位
D.向右平移 个单位
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国内某知名连锁店分店开张营业期间,在固定的时间段内消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该分店经理对开业前天参加抽奖活动的人数进行统计, 表示开业第天参加抽奖活动的人数,得到统计表格如下:
经过进一步统计分析,发现与具有线性相关关系.
(1)若从这天中随机抽取两天,求至少有天参加抽奖人数超过的概率;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程,并估计若该活动持续天,共有多少名顾客参加抽奖.
参考公式: , .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,点是椭圆上的点,离心率.
(1)求椭圆的方程;
(2)点在椭圆上,若点与点关于原点对称,连接并延长与椭圆的另一个交点为,连接,求面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com