精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= +b(a,b∈R)的图象在点(1,f(1))处的切线方程为y=x﹣1.
(1)求实数a,b的值及函数f(x)的单调区间.
(2)当f(x1)=f(x2)(x1≠x2)时,比较x1+x2与2e(e为自然对数的底数)的大小.

【答案】
(1)解:f′(x)=

∵函数f(x)图象在点(1,f(1))处的切线方程为y=x﹣1,

∴f(x)= ,定义域为(0,+∞),

∴f′(x)=

∴x∈(0,e),f′(x)>0,x∈(e,+∞),f′(x)<0,

∴f(x)的单调增区间是(0,e),单调减区间是(e,+∞)


(2)解:当f(x1)=f(x2)(x1≠x2)时,x1+x2>2e,

下面证明结论,

当x>e时,f(x)= >0,由(1)可知f(x)的单调增区间是(0,e),单调减区间是(e,+∞),

又f(1)=0,

∴若f(x1)=f(x2)(x1≠x2),则x1,x2都大于1,且必有一个小于e,一个大于e,

设1<x1<e<x2

当x2≥2e时,显然x1+x2>2e,

当e<x2<2e时,

∴f(x1)﹣f(2e﹣x2)=f(x2)﹣f(2e﹣x2)=

设g(x)= ,e<x<2e,

∴g′(x)= {4e(e﹣x)(1﹣lnx)+x2[(2﹣ln(﹣(x﹣e)2+e2]},

∵e<x<2e,

∴0<﹣(x﹣e)2+e2<e2

∴2﹣ln(﹣(x﹣e)2+e2>0

∵4e(e﹣x)(1﹣lnx)>0,

∴g′(x)>0,

∴g(x)在(e,2e)上单调递增,

∴g(x)>g(e)=0,

∴f(x1)>f(2e﹣x2),

∵1<x1<e<x2

∴0<2e﹣x2<e,

∵f(x)在(0,e)上单调递增,

∴x1>2e﹣x2

∴x1+x2>2e,

综上所述,当f(x1)=f(x2)(x1≠x2)时,x1+x2>2e


【解析】(1)根据导数几何意义即可求出a,b的值,根据导数和函数的单调性的关系即可求出,(2)当f(x1)=f(x2)(x1≠x2)时,x1+x2>2e,设1<x1<e<x2,当x2≥2e时,显然x1+x2>2e,当e<x2<2e时,构造函数,根据函数的单调性即可证明
【考点精析】根据题目的已知条件,利用利用导数研究函数的单调性的相关知识可以得到问题的答案,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,系统地总结了战国、秦、汉时期的数学成就.书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,若某“阳马”的三视图如图所示(单位:cm),则该阳马的外接球的体积为(
A.100πcm3
B.
C.400πcm3
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用数学归纳法证明1+2+3+…+n2= ,则当n=k+1时左端应在n=k的基础上加上(
A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.
(Ⅰ)证明:AC=AB1
(Ⅱ)若AC⊥AB1 , ∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数y=f(x)满足:①对于任意的x∈R,都有f(x+2)=f(x﹣2);②函数y=f(x+2)是偶函数;③当x∈(0,2]时,f(x)=ex ,a=f(﹣5),b=f( ).c=f( ),则a,b,c的大小关系是(
A.a<b<c
B.c<a<b
C.c<a<b
D.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某产品的广告费用x(单位:万元)与销售额y(单位:万元)具有线性关系关系,其统计数据如下表:

x

3

4

5

6

y

25

30

40

45

由上表可得线性回归方程 = x+ ,据此模型预报广告费用为8万元时的销售额是(
附: = = x.
A.59.5
B.52.5
C.56
D.63.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】网购是当前民众购物的新方式,某公司为改进营销方式,随机调查了100名市民,统计其周平均网购的次数,并整理得到如下的频数分布直方图.这100名市民中,年龄不超过40岁的有65人将所抽样本中周平均网购次数不小于4次的市民称为网购迷,且已知其中有5名市民的年龄超过40岁.
(1)根据已知条件完成下面的2×2列联表,能否在犯错误的概率不超过0.10的前提下认为网购迷与年龄不超过40岁有关?

网购迷

非网购迷

合计

年龄不超过40岁

年龄超过40岁

合计


(2)若从网购迷中任意选取2名,求其中年龄丑啊过40岁的市民人数ξ的分布列与期望. 附:

P(K2≥k0

0.15

0.10

0.05

0.01

k0

2.072

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,直线l的参数方程为 (t为参数),以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)求直线l被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省高考改革新方案,不分文理科,高考成绩实行“3+3”的构成模式,第一个“3”是语文、数学、外语,每门满分150分,第二个“3”由考生在思想政治、历史、地理、物理、化学、生物6个科目中自主选择其中3个科目参加等级性考试,每门满分100分,高考录取成绩卷面总分满分750分.为了调查学生对物理、化学、生物的选考情况,将“某市某一届学生在物理、化学、生物三个科目中至少选考一科的学生”记作学生群体S,从学生群体S中随机抽取了50名学生进行调查,他们选考物理,化学,生物的科目数及人数统计如表:

选考物理、化学、生物的科目数

1

2

3

人数

5

25

20

(I)从所调查的50名学生中任选2名,求他们选考物理、化学、生物科目数量不相等的概率;
(II)从所调查的50名学生中任选2名,记X表示这2名学生选考物理、化学、生物的科目数量之差的绝对值,求随机变量X的分布列和数学期望;
(III)将频率视为概率,现从学生群体S中随机抽取4名学生,记其中恰好选考物理、化学、生物中的两科目的学生数记作Y,求事件“y≥2”的概率.

查看答案和解析>>

同步练习册答案