精英家教网 > 高中数学 > 题目详情
下列有关命题的说法正确的是(  )
A、命题“若x2=1,则下”的否命题为:“若x2=1,则x≠1”
B、若p∨q为真命题,则p,q均为真命题
C、命题“存在x∈R,使得x2+x+1<0”的否定是:“对任意x∈R,均有x2+x+1<0”
D、命题“若x=y,则sinx=siny”的逆否命题为真命题
考点:命题的真假判断与应用
专题:简易逻辑
分析:直接写出命题的否命题判断A;由复合命题的真值表判断B;写出特称命题的否定判断C;由互为逆否命题的两个命题共真假判断D.
解答: 解:命题“若x2=1,则x=1”的否命题为:“若x2≠1,则x≠1”,选项A错误;
只要p,q中存在真命题,则p∨q就为真命题,选项B错误;
命题“存在x∈R,使得x2+x+1<0”的否定是:“对任意x∈R,均有x2+x+1≥0”,命题C错误;
命题“若x=y,则sinx=siny”为真命题,则其逆否命题为真命题,D正确.
故选:D.
点评:本题考查了命题的真假判断与应用,考查了命题的否命题和命题的否定,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在空间四边形ABCD中,两条对角线AC,BD互相垂直,且长度分别为4和6,平行于这两条对角线的平面与边AB,BC,CD,DA分别相交于点E,F,G,H,记四边形EFGH的面积为y,设
BE
AB
=x
,则(  )
A、函数y=f(x)的值域为(0,4]
B、函数y=f(x)的最大值为8
C、函数y=f(x)在(0,
2
3
)
上单调递减
D、函数y=f(x)满足f(x)=f(1-x)

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线4x2-y2=64上一点P到它的一个焦点的距离为10,那么它到另一个焦点的距离等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若双曲线
x2
8
-
y2
m
=1的渐近线方程为y=±2x,则实数m等于(  )
A、4B、8C、16D、32

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数满足性质:“f(-x)=f(x)”的函数是(  )
A、f(x)=x-1
B、f(x)=-x2+x
C、f(x)=2x-2-x
D、f(x)=2x+2-x

查看答案和解析>>

科目:高中数学 来源: 题型:

圆上不相同九点,两点连成线段,线段在圆内交点的最多个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定点F1(-1,0),F2(1,0),曲线E是以原点为顶点、F2为焦点且离心率为1的圆锥曲线,椭圆C与曲线E的交点为A,B,且点A到点F1,F2的距离之和为4.
(1)求椭圆C和曲线E的方程;
(2)在椭圆C和曲线E上是否存在这样的点P,使得△PAB的面积为
8
6
9
?若存在,求出所有满足条件的点P的坐标;若不存在,说明理由;
(3)若平行于x轴的直线分别与椭圆C和曲线E交于M(x1,y1),N(x2,y2)两点,且x1>x2,求△MNF2的周长t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

记等差数列{an}得前n项和为Sn,利用倒序相加法的求和办法,可将Sn表示成首项a1,末项an与项数的一个关系式,即Sn=
(a1+an)n
2
;类似地,记等比数列{bn}的前n项积为Tn,bn>0(n∈N*),类比等差数列的求和方法,可将Tn表示为首项b1,末项bn与项数的一个关系式,即公式Tn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三内角A、B、C的对边分别是a,b,c,∠BAC=105°b=2,c=
2

(1)求sinA.
(2)若
BE
BC
(λ>0),∠BAE=45°,试求AE的长.

查看答案和解析>>

同步练习册答案