精英家教网 > 高中数学 > 题目详情
(2012•深圳二模)如图,已知正方形ABCD在水平面上的正投影(投影线垂直于投影面)是四边形A′B′C′D′,其中A与A'重合,且BB′<DD′<CC′.
(1)证明AD′∥平面BB′C′C,并指出四边形AB′C′D′的形状;
(2)如果四边形中AB′C′D′中,AD′=
2
,AB′=
5
,正方形的边长为
6
,求平面ABCD与平面AB′C′D′所成的锐二面角θ的余弦值.
分析:(1)先证明BB°∥CC′∥DD′,在CC′上取点E,使得CE=DD′,连接BE,D′E,证明ABED′是平行四边形,可得AD′∥BE,从而可证AD′平面BB′C′C,四边形AB′C′D′是平行四边形;
(2)先证明AC′⊥B′C′,根据正方形ABCD在水平面上的正投影(投影线垂直于投影面)是四边形A′B′C′D′,可得平面ABCD与平面AB′C′D′所成的锐二面角θ的余弦值=
SAB′C′D′
SABCD
,计算面积即可求得结论.
解答:(1)证明:依题意,BB′⊥平面AB′C′D′,CC′⊥平面AB′C′D′,DD′⊥平面AB′C′D′,
所以BB°∥CC′∥DD′.             …(2分)
在CC′上取点E,使得CE=DD′,
连接BE,D′E,如图1.

因为CE∥DD′,且CE=DD′,所以CDD′E是平行四边形,∴D′E∥DC,且D′E=DC.
又ABCD是正方形,∴DC∥AB,且DC=AB,
所以D′E∥AB,且D′E=AB,故ABED′是平行四边形,…(4分)
从而AD′∥BE,又BE?平面BB′C′C,AD′?平面BB′C′C,
所以AD′∥平面BB′C′C.           …(6分)
四边形AB′C′D′是平行四边形.…(7分)
(2)依题意,在Rt△ABB′中,BB′=1,在Rt△ADD′中,DD′=2,
所以CC′=BB′+DD′-AA′=1+2-0=3.   …(8分)
连接AC,AC′,如图2,
在Rt△ACC′中,AC′=
3

所以AC′2+B′C′2=AB′2,故AC′⊥B′C′.…(10分)
由题意,正方形ABCD在水平面上的正投影(投影线垂直于投影面)是四边形A′B′C′D′,
所以平面ABCD与平面AB′C′D′所成的锐二面角θ的余弦值=
SAB′C′D′
SABCD
.  …(12分)
而SABCD=6,SAB′C′D′=B′C′×AC′=
2
×
3=
6
,所以cosθ=
6
6

所以平面ABCD与平面AB′C′D′所成的锐二面角θ的余弦值为
6
6
. …(14分)
点评:本题考查线面平行,考查面面角,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•深圳二模)已知平面向量
a
b
满足条件
a
+
b
=(0,1),
a
-
b
=(-1,2),则
a
b
=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳二模)设a,b,c,d∈R,若a,1,b成等比数列,且c,1,d 成等差数列,则下列不等式恒成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳二模)已知二次函数f(x)的最小值为-4,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R}.
(1)求函数f(x)的解析式;
(2)求函数g(x)=
f(x)x
-4lnx
的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳二模)曲线y=(
1
2
)
x
在x=0点处的切线方程是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳二模)执行图中程序框图表示的算法,若输入m=5533,n=2012,则输出d=
503
503
(注:框图中的赋值符号“=”也可以写成“←”或“:=”)

查看答案和解析>>

同步练习册答案