精英家教网 > 高中数学 > 题目详情
精英家教网如图,四边形ABCD为矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于点F,且点F在CE上.
(Ⅰ)求证:AE⊥BE;
(Ⅱ)求三棱锥D-AEC的体积.
分析:(Ⅰ)由题意证明BC⊥平面ABE,得AE⊥BC,再结合条件证明AE⊥平面BCE,再证出AE⊥BE;
(Ⅱ)利用题意得到平面ACD⊥平面ABE,作出交线的垂线,利用换低求三棱锥体积.
解答:(Ⅰ)证明:由题意知,AD⊥平面ABE,且AD∥BC
∴BC⊥平面ABE,∵AE?平面ABE
∴AE⊥BC,
∵BF⊥平面ACE,且AE?平面ABE
∴BF⊥AE,又BC∩BF=B,
∴AE⊥平面BCE,
又∵BE?平面BCE,
∴AE⊥BE.

(Ⅱ)在△ABE中,过点E作EH⊥AB于点H,
∵AD⊥平面ABE,且AD?平面ACD,
∴平面ACD⊥平面ABE,∴EH⊥平面ACD.
由已知及(Ⅰ)得EH=
1
2
AB=
2
,S△ADC=2
2

故VD-ABC=VE-ADC=
1
3
×2
2
×
2
=
4
3
点评:本题主要考查垂直关系,利用线面垂直的定义和判定定理,进行线线垂直与线面垂直
的转化;求三棱锥体积常用的方法:换底法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四边形ABCD与A′ABB′都是边长为a的正方形,点E是A′A的中点,A′A⊥平面ABCD.
(1) 求证:A′C∥平面BDE;
(2) 求证:平面A′AC⊥平面BDE
(3) 求平面BDE与平面ABCD所成锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(Ⅰ)证明PQ⊥平面DCQ;
(Ⅱ)求棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD为矩形,且AD=2,AB=1,PA⊥平面ABCD,PA=1,E为BC的中点.
(1)求点C到面PDE的距离;  
(2)求二面角P-DE-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD内接于⊙O,如果它的一个外角∠DCE=64°,那么∠BOD
128°
128°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(1)证明:平面PQC⊥平面DCQ;
(2)求二面角D-PQ-C的余弦值.

查看答案和解析>>

同步练习册答案