精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=ln($\sqrt{{x}^{2}+1}+x$)
(1)证明:函数f(x)=ln($\sqrt{{x}^{2}+1}+x$)在定义域R上为增函数;
(2)若函数g(x)=f(x)+2x-2-x满足g(3a-1)+g(a-3)>0,求a的取值范围.

分析 (1)先根据函数奇偶性的定义,可得函数f(x)为奇函数,再根据函数单调性的性质,和函数奇偶性的性质,可得函数f(x)=ln($\sqrt{{x}^{2}+1}+x$)在定义域R上为增函数;
(2)令函数h(x)=2x-2-x,可得函数h(x)也为奇函数,且在R上为增函数,进而可得g(x)为奇函数,且在R上为增函数,进而转化不不等式g(3a-1)+g(a-3)>0为整式不等式,可得结论.

解答 证明:(1)∵函数f(x)=ln($\sqrt{{x}^{2}+1}+x$),
∴f(-x)=ln($\sqrt{{x}^{2}+1}-x$)=ln$\frac{1}{\sqrt{{x}^{2}+1}+x}$=-ln($\sqrt{{x}^{2}+1}+x$)=-f(x),
故函数f(x)为奇函数,
当x≥0时,t=$\sqrt{{x}^{2}+1}+x$为增函数,y=lnt为增函数,
故函数f(x)=ln($\sqrt{{x}^{2}+1}+x$)也为增函数,
再由奇函数在对称区间上单调性一致,
可得当x≤0时,函数f(x)=ln($\sqrt{{x}^{2}+1}+x$)也为增函数,
综上可得:函数f(x)=ln($\sqrt{{x}^{2}+1}+x$)在定义域R上为增函数;
(2)令函数h(x)=2x-2-x
则h(-x)=2-x-2x=-(2x-2-x)=-h(x),
故函数h(x)也为奇函数,
当x≥0时,t=2x为增函数,s=2-x为减函数,
故h(x)=2x-2-x为增函数,
再由奇函数在对称区间上单调性一致,
可得当x≤0时,函数h(x)=2x-2-x也为增函数,
又由函数g(x)=f(x)+2x-2-x
故函数g(x)为奇函数,且在R上为增函数,
若g(3a-1)+g(a-3)>0,
则g(3a-1)>-g(a-3),
即g(3a-1)>g(3-a),
即3a-1>3-a,
解得:a>1

点评 本题考查的知识点是函数单调性的判定与证明,对数函数的图象和性质,函数的奇偶性,是函数图象和性质的综合应用,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.f(x)=x2-(a+1)x+a,g(x)=-(a+4)x-4+a,(a∈R).
(1)比较f(x)与g(x)的大小;
(2)解关于x的不等式:f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.点P(a,3)到直线4x-3y+1=0的距离等于4,则P点的坐标是(  )
A.(7,3)B.(3,3)C.(7,3)或(-3,3)D.(-7,3)或(3,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,b=2,则边长c的取值范围(1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知A(2,0)、B(0,2),从点P(1,0)射出的光线经直线AB反向后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是(  )
A.3B.2$\sqrt{2}$C.$\sqrt{10}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若不等式ax2+bx+1>0的解集是(-$\frac{1}{3}$,$\frac{1}{2}$),则不等式x2+bx+a<0的解集是(-3,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数g(x)=1+$\frac{2}{{2}^{x}-1}$.
(1)判断函数g(x)的奇偶性
(2)用定义证明函数g(x)在(-∞,0)上为减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.sin(-1665°)的值是(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$-\frac{{\sqrt{2}}}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)={(\frac{1}{3})^x},x∈[{-1,1}]$,函数g(x)=f2(x)-2af(x)+3
(1)若a=1,证明:函数g(x)在区间[-1,0]上为减函数;
(2)求g(x)的最小值h(a)

查看答案和解析>>

同步练习册答案