精英家教网 > 高中数学 > 题目详情
20.直线$x-\sqrt{3}y+5=0$的倾斜角是30°.

分析 根据题意,设该直线的倾斜角为θ,(0°≤θ<180°),由直线的方程可得其斜率k=$\frac{\sqrt{3}}{3}$,由斜率与倾斜角的关系可得tanθ=$\frac{\sqrt{3}}{3}$,又由θ的范围可得θ的值,即可得答案.

解答 解:根据题意,设该直线的倾斜角为θ,(0°≤θ<180°)
直线$x-\sqrt{3}y+5=0$的斜率k=$\frac{\sqrt{3}}{3}$,
则有tanθ=$\frac{\sqrt{3}}{3}$,又由0°≤θ<180°,
故θ=30°;
故答案为:30°

点评 本题考查直线的倾斜角,解题要注意直线倾斜角的定义以及倾斜角的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是(  )
A.(7,5)B.(5,7)C.(2,10)D.(10,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={1,2,3},那么A的真子集的个数是(  )
A.8B.7C.6D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2sinx-2cosx,$x∈[-\frac{1}{2},1]$,g(x)=e1-2x
(1)求函数f(x)在x=0处的切线方程;
(2)求证:$x∈[-\frac{1}{2},1]$时,f(x)≥l(x)恒成立;
(3)求证:$x∈[-\frac{1}{2},1]$时,f(x)+g(x)≥0恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知命题p:“$\frac{2{x}^{2}}{m}$+$\frac{{y}^{2}}{m-1}$=1是焦点在x轴上的椭圆的标准方程”,命题q:?x1∈R,8x12-8mx1+7m-6=0.若p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列函数中既是奇函数,又在区间(0,1)上是增函数的为(  )
A.y=lnxB.y=3xC.y=sinxD.y=x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,直线l:x-y+1=0交椭圆于A,B两点,交y轴于C点,若$3\overrightarrow{AB}=2\overrightarrow{BC}$,则椭圆的方程是x2+4y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知sin($\frac{π}{3}$-x)=$\frac{1}{2}$cos(x-$\frac{π}{2}$),则tan(x-$\frac{π}{6}$)等于(  )
A.$\frac{1}{6}$B.$\frac{\sqrt{3}}{9}$C.-$\frac{\sqrt{3}}{6}$D.-$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an}满足a1=1,且${a_n}=2{a_{n-1}}+{2^n}$(n≥2,n∈N*),则an=(2n-1)•2n-1

查看答案和解析>>

同步练习册答案