精英家教网 > 高中数学 > 题目详情

【题目】已知函数具有如下性质:在上是减函数,在上是增函数.

1)若函数的值域为,求b的值;

2)已知函数,,求函数的单调区间和值域;

3)对于(2)中的函数和函数,若对任意,总存在,使得成立,求实数c的值.

【答案】12上递减,在上递增;值域为3

【解析】

1)由所给函数,即可得出对于函数,时取得最小值,解出即可.

2)设,,.由所给函数性质知:单调递减,单调递增.进而取得最值.

3单调递减,可得.对任意,总存在,使得成立,,解出即可.

:1)由条件知上单调递减,上单调递增,

所以当,,所以.

2)令,,

所以,

由条件知上递减,上递增,

上递增,

根据复合函数单调性知上递减,

上递增,

所以上递减,上递增;

根据的单调性知,

,,

,,所以值域为.

3的值域为,

对任意,总存在,使得成立

由题意知的值域为的值域的子集,

所以

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,一个铝合金窗分为上、下两栏,四周框架和中间隔档的材料为铝合金,宽均为6,上栏与下栏的框内高度(不含铝合金部分)的比为1:2,此铝合金窗占用的墙面面积为28800,设该铝合金窗的宽和高分别为,铝合金窗的透光部分的面积为.

(1)试用表示

(2)若要使最大,则铝合金窗的宽和高分别为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中, 分别是的中点.

(1)求证: 平面

(2)若三棱柱的体积为4,求异面直线夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当,且的最大值为,求的值;

2)方程上的两解分别为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:

①甲地该月14时的平均气温低于乙地该月14时的平均气温;

②甲地该月14时的平均气温高于乙地该月14时的平均气温;

③甲地该月14时的平均气温的标准差小于乙地该月14时的气温的标准差;

④甲地该月14时的平均气温的标准差大于乙地该月14时的气温的标准差.

其中根据茎叶图能得到的统计结论的标号为(

A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,左、右焦点分别为,点,点在线段的中垂线上.

1)求椭圆的方程;

2)设直线与椭圆交于两点,直线的倾斜角分别为,且,求证:直线过定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年“十一”期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速()分成六段: ,后得到如图的频率分布直方图.

(1)求这40辆小型车辆车速的众数和中位数的估计值;

(2)若从车速在的车辆中任抽取2辆,求车速在的车辆恰有一辆的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求的定义域;

(2)判断的奇偶性并给予证明;

(3)求关于x的不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目,若一名学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.

某学校为了了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:

性别

选考方案确定情况

物理

化学

生物

历史

地理

政治

男生

选考方案确定的有8人

8

8

4

2

1

1

选考方案待确定的有6人

4

3

0

1

0

0

女生

选考方案确定的有10人

8

9

6

3

3

1

选考方案待确定的有6人

5

4

1

0

0

1

(Ⅰ)估计该学校高一年级选考方案确定的学生中选考生物的学生有多少人?

(Ⅱ)假设男生、女生选择选考科目是相互独立的.从选考方案确定的8位男生随机选出1人,从选考方案确定的10位女生中随机选出1人,试求该男生和该女生的选考方案中都含有历史科目的概率;

(Ⅲ)从选考方案确定的8名男生随机选出2名,设随机变量两名男生选考方案相同时,两名男生选考方案不同时,求的分布列及数学期望.

查看答案和解析>>

同步练习册答案