精英家教网 > 高中数学 > 题目详情

【题目】设数列{an}的前n项和为Sn , a1=1,an= +2(n﹣1)(n∈N*).
(1)求证:数列{an}为等差数列,并分别写出an和Sn关于n的表达式;
(2)设数列 的前n项和为Tn , 证明:

【答案】
(1)证明:由an= +2(n﹣1),得Sn=nan﹣2n(n﹣1)(n∈N*).

当n≥2时,an=Sn﹣Sn1=nan﹣(n﹣1)an1﹣4(n﹣1),即an﹣an1=4,

∴数列{an}是以a1=1为首项,4为公差的等差数列.

于是,an=4n﹣3,Sn= =2n2﹣n(n∈N*


(2)证明:Tn= + + +…+

= + + +…+

= [(1﹣ )+( )+( )+…+( )]

= (1﹣ )= =

又由题意知Tn单调递增,故Tn≥T1=

于是, ≤Tn


【解析】(1)由an= +2(n﹣1),得Sn=nan﹣2n(n﹣1)(n∈N*),由此能证明数列{an}为等差数列,并能求出an和Sn关于n的表达式.(2)由 =( ),利用裂项求和法能证明 ≤Tn
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系,以及对数列的通项公式的理解,了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,底面为正三角形,侧棱底面.已知 的中点,

(1)求证:平面平面

(2)求证:A1C∥平面

(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大提出,坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村真脱贫,坚持扶贫同扶智相结合,帮助贫困村种植蜜柚,并利用电商进行销售,为了更好地销售,现从该村的蜜柚树上随机摘下了100个蜜柚进行测重,其质量分别在(单位:克)中,其频率分布直方图如图所示.

(1)求质量落在两组内的蜜柚的抽取个数,

(2)从质量落在内的蜜柚中随机抽取2个,求这2个蜜柚质量均小于2000克的概率;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中是真命题的个数是( )

(1)垂直于同一条直线的两条直线互相平行

(2)与同一个平面夹角相等的两条直线互相平行

(3)平行于同一个平面的两条直线互相平行

(4)两条直线能确定一个平面

(5)垂直于同一个平面的两个平面平行

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+sin2x.给出以下四个命题:
x>0,不等式f(x)<2x恒成立;
k∈R,使方程f(x)=k有四个不相等的实数根;
③函数f(x)的图象存在无数个对称中心;
④若数列{an}为等差数列,且f(al)+f(a2)+f(a3)=3π,则a2=π.
其中的正确命题有 . (写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,点为椭圆上一点. 的重心为,内心为,且,则该椭圆的离心率为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标平面中,的两个顶点为,平面内两点同时满足:++=;②||=||=||;③

1)求顶点的轨迹的方程;

(2)过点作两条互相垂直的直线,直线与点的轨迹相交弦分别为,设弦的中点分别为.求四边形的面积的最小值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,三棱台 中,分别为AC,CB的中点.

(1)求证:平面

(2)若,求证:平面 平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示MNP分别是正方体ABCDA1B1C1D1的棱ABBCDD1上的点.

(1)求证无论点PDD1上如何移动总有BPMN

(2)DD1上是否存在这样的点P使得平面APC1⊥平面ACC1证明你的结论.

查看答案和解析>>

同步练习册答案