【题目】已知为等差数列,且(Ⅰ)求数列的通项公式;(Ⅱ)记的前项和为,若成等比数列,求正整数的值。
【答案】:(Ⅰ)(Ⅱ)
【解析】
试题(Ⅰ)设等差数列{an}的公差等于d,则由题意可得,解得 a1=2,d=2,从而得到{an}的通项公式.
(Ⅱ) 由(Ⅰ)可得 {an}的前n项和为Sn ==n(n+1),再由=a1Sk+2 ,求得正整数k的值.
解:(Ⅰ)设等差数列{an}的公差等于d,则由题意可得,解得 a1=2,d=2.
∴{an}的通项公式 an =2+(n﹣1)2=2n.
(Ⅱ) 由(Ⅰ)可得 {an}的前n项和为Sn ==n(n+1).
∵若a1,ak,Sk+2成等比数列,∴=a1Sk+2 ,
∴4k2 =2(k+2)(k+3),k="6" 或k=﹣1(舍去),故 k=6.
科目:高中数学 来源: 题型:
【题目】某研究机构对高三学生的记忆力和判断力进行统计分析,得下表数据:
6 | 8 | 10 | 12 | |
2 | 3 | 5 | 6 |
(1)请在图中画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(3)试根据(2)求出的线性回归方程,预测记忆力为9的同学的判断力.
相关公式:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“克拉茨猜想”又称“猜想”,是德国数学家洛萨克拉茨在1950年世界数学家大会上公布的一个猜想:任给一个正整数,如果是偶数,就将它减半;如果为奇数就将它乘3加1,不断重复这样的运算,经过有限步后,最终都能够得到1.己知正整数经过6次运算后得到1,则的值为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱中,,为棱的中点,为棱上一点,.
(1)确定的位置,使得平面 平面,并说明理由;
(2)设二面角的正切值为,,为线段上一点,且与平面所成角的正弦值为,求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂,两条相互独立的生产线生产同款产品,在产量一样的情况下通过日常监控得知,生产线生产的产品为合格品的概率分别为和.
(1)从,生产线上各抽检一件产品,若使得至少有一件合格的概率不低于,求的最小值.
(2)假设不合格的产品均可进行返工修复为合格品,以(1)中确定的作为的值.
①已知,生产线的不合格产品返工后每件产品可分别挽回损失元和元。若从两条生产线上各随机抽检件产品,以挽回损失的平均数为判断依据,估计哪条生产线挽回的损失较多?
②若最终的合格品(包括返工修复后的合格品)按照一、二、三等级分类后,每件分别获利元、元、元,现从,生产线的最终合格品中各随机抽取件进行检测,结果统计如下图;用样本的频率分布估计总体分布,记该工厂生产一件产品的利润为,求的分布列并估算该厂产量件时利润的期望值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:
①函数是奇函数;
②将函数的图像向左平移个单位长度,得到函数的图像;
③若是第一象限角且,则;
④是函数的图像的一条对称轴;
⑤函数的图像关于点中心对称。
其中,正确的命题序号是______________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地西红柿从2月1号起开始上市,通过市场调查,得到西红柿种植成本(单位:元/100)与上市时间(距2月1日的天数,单位:天)的数据如下表:
时间 | 50 | 110 | 250 |
成本 | 150 | 108 | 150 |
(1)根据上表数据,从下列函数中选取一个函数描述西红柿种植成本与上市时间的变化关系:;
(2)利用(1)中选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(1)求证:
(2)若函数的图象与直线没有交点,求实数的取值范围;
(3)若函数,则是否存在实数,使得的最小值为?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com