精英家教网 > 高中数学 > 题目详情
在双曲线
y2
12
-
x2
13
=1
的一支上不同的三点A(x1,y1)、B(
26
,6)、C(x2,y2)与焦点F(0,5)的距离成等差数列.
(1)求y1+y2
(2)证明线段AC的垂直平分线经过某一定点,并求该定点的坐标.
分析:(1)由双曲线的焦半径公式可知|AF|=ey1-2
3
,|BF|=6e-2
3
,|CF|=ey2-2
3
,再由|AF|,|BF|,|CF|成等差数列,可求出y1+y2的值.
(2)借助点差法求出AC的垂直平分线方程为y-6=-
13x
x1+x2
+
13
2
,由此可以得到不论-
13
x1+x2
为何值,直线恒过定点(0,
25
2
)
解答:解:(1)由题设知,A、B、C在双曲线的同一支上,且y1,y2均大于0,
∴由双曲线的焦半径公式可知|AF|=ey1-2
3
,|BF|=6e-2
3
,|CF|=ey2-2
3

∵|AF|,|BF|,|CF|成等差数列,∴6e=
ey1+ey2
2

∴y1+y2=12.
(2)证明:∵A,C在双曲线上,∴
y
2
1
12
-
x
2
1
13
=1
,且
y
2
2
12
-
x
2
2
13
=1
.两式相减得
y1-y2
x1-x2
=
12
13
x1+x2
y1 +y2
=
x1+x2
13

于是AC的垂直平分线方程为y-6=-
13
x1+x2
(x-
x1+x2
2
)
,即y-6=-
13x
x1+x2
+
13
2

∴y=-
13x
x1+x2
+
25
2

∴不论-
13
x1+x2
为何值,直线恒过定点(0,
25
2
)
点评:本题考查双曲线的性质及其运用,解题时要注意点差法的合理应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线E:
x2
24
-
y2
12
=1
的左焦点为F,左准线l与x轴的交点是圆C的圆心,圆C恰好经过坐标原点O,设G是圆C上任意一点.
(Ⅰ)求圆C的方程;
(Ⅱ)若直线FG与直线l交于点T,且G为线段FT的中点,求直线FG被圆C所截得的弦长;
(Ⅲ)在平面上是否存在定点P,使得对圆C上任意的点G有
|GF|
|GP|
=
1
2
?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•安庆三模)已知焦点在x轴上的椭圆C1
x2
a2
+
y2
12
=1和双曲线C2
x2
m2
-
y2
n2
=1的离心率互为倒数,它们在第一象限交点的坐标为(
4
10
5
6
5
5
),设直线l:y=kx+m(其中k,m为整数).
(1)试求椭圆C1和双曲线C2 的标准方程;
(2)若直线l与椭圆C1交于不同两点A、B,与双曲线C2交于不同两点C、D,问是否存在直线l,使得向量
AC
+
BD
=
0
,若存在,指出这样的直线有多少条?若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•虹口区一模)已知双曲线
x2
4
-
y2
12
=1
的左、右焦点分别为F1,F2,P在双曲线上,且∠F1PF2=90°,则点P到x轴的距离等于
3
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线E:
x2
24
-
y2
12
=1
的左焦点为F,左准线l与x轴的交点是圆C的圆心,圆C恰好经过坐标原点O,设G是圆C上任意一点.
(Ⅰ)求圆C的方程;
(Ⅱ)若直线FG与直线l交于点T,且G为线段FT的中点,求直线FG被圆C所截得的弦长;
(Ⅲ)在平面上是否存在定点P,使得对圆C上任意的点G有
|GF|
|GP|
=
1
2
?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案