ÒÑÖªÊýÁÐ{an}ÖУ¬a1=3£¬a2=5£¬ÆäÇ°nÏîºÍSnÂú×ãSn+Sn-2=2Sn-1+2n-1£¨n¡Ý3£©£®Áîbn=
1
anan+1
£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Èôf£¨x£©=2x-1£¬ÇóÖ¤£ºTn=b1f(1)+b2f(2)+¡­+bnf(n)£¼
1
6
£¨n¡Ý1£©£»
£¨¢ó£©ÁîTn=
1
2
(b1a+b2a2+b3a3+¡­+bnan)
£¨a£¾0£©£¬ÇóͬʱÂú×ãÏÂÁÐÁ½¸öÌõ¼þµÄËùÓÐaµÄÖµ£º¢Ù¶ÔÓÚÈÎÒâÕýÕûÊýn£¬¶¼ÓÐTn£¼
1
6
£»¢Ú¶ÔÓÚÈÎÒâµÄm¡Ê(0£¬
1
6
)
£¬¾ù´æÔÚn0¡ÊN*£¬Ê¹µÃn¡Ýn0ʱ£¬Tn£¾m£®
·ÖÎö£º£¨¢ñ£©ÓÉÌâÒâÖªSn-Sn-1=Sn-1-Sn-2+2n-1£¨n¡Ý3£©¼´an=an-1+2n-1ÔÙÓÃÀÛ¼Ó·¨Çó½â£®
£¨¢ò£©ÓÉ£¨I£©ÇóµÃbn£¬ÔÙ¹Û²ìTn=b1f£¨1£©+b2f£¨2£©+¡­+bnf£¨n£©¿ÉÓÃÁÑÏîÏàÏû·¨Çó½â£®
£¨¢ó£©ÊÜ£¨II £©µÄÆô·¢£¬ÎÒÃÇ¿ÉÒÔÏÈa=2Ñо¿£¬ÓÉ£¨¢ò£©Öª£ºTn£¼
1
6
£¬¼´Ìõ¼þ¢ÙÂú×㣻ÓÖ0£¼m£¼
1
6
£¬
¡àTn£¾m?
1
2
(
1
1+2
-
1
2n+1+1
)£¾m?2n+1£¾
3
1-6m
-1?n£¾log2(
3
1-6m
-1)-1£¾0
£®
ÒòΪÊǺã³ÉÁ¢£¬ËùÒÔÈ¡n0µÈÓÚ²»³¬¹ýlog2(
3
1-6m
-1)
µÄ×î´óÕûÊý£¬Ôòµ±n¡Ýn0ʱ£¬Tn£¾m£¨¢¢£©µ±a£¾2ʱ£¬¡ßn¡Ý1£¬
an
2n
=(
a
2
)n¡Ý
a
2
£¬¡àan¡Ý
a
2
2n
£¬£®£¨¢££©µ±0£¼a£¼2ʱ£¬¡ßn¡Ý1£¬
an
2n
=(
a
2
)n¡Ü
a
2
£¬¡àan¡Ü
a
2
2n
£¬·Ö±ð·ÅËõÑо¿£®
½â´ð£º½â£º£¨¢ñ£©ÓÉÌâÒâÖªSn-Sn-1=Sn-1-Sn-2+2n-1£¨n¡Ý3£©
¼´an=an-1+2n-1£¨n¡Ý3£©£¨1·Ö£©
¡àan=£¨an-an-1£©+£¨an-1-an-2£©++£¨a3-a2£©+a2
=2n-1+2n-2++22+5
=2n-1+2n-2++22+2+1+2
=2n+1£¨n¡Ý3£©£¨3·Ö£©
¼ìÑéÖªn=1¡¢2ʱ£¬½áÂÛÒ²³ÉÁ¢£¬¹Êan=2n+1£®£¨4·Ö£©
£¨¢ò£©ÓÉÓÚbnf(n)=
1
(2n+1)(2n+1+1)
2n-1=
1
2
(2n+1+1)-(2n+1)
(2n+1)(2n+1+1)
=
1
2
(
1
2n+1
-
1
2n+1+1
)

¹ÊTn=b1f(1)+b2f(2)++bnf(n)=
1
2
[(
1
1+2
-
1
1+22
)+(
1
1+22
-
1
1+23
)++(
1
2n+1
-
1
2n+1+1
)]

=
1
2
(
1
1+2
-
1
2n+1+1
)£¼
1
2
1
1+2
=
1
6
£®£¨9·Ö£©
£¨¢ó£©£¨¢¡£©µ±a=2ʱ£¬ÓÉ£¨¢ò£©Öª£ºTn£¼
1
6
£¬¼´Ìõ¼þ¢ÙÂú×㣻ÓÖ0£¼m£¼
1
6
£¬
¡àTn£¾m?
1
2
(
1
1+2
-
1
2n+1+1
)£¾m?2n+1£¾
3
1-6m
-1?n£¾log2(
3
1-6m
-1)-1£¾0
£®
È¡n0µÈÓÚ²»³¬¹ýlog2(
3
1-6m
-1)
µÄ×î´óÕûÊý£¬Ôòµ±n¡Ýn0ʱ£¬Tn£¾m£®£¨10·Ö£©
£¨¢¢£©µ±a£¾2ʱ£¬¡ßn¡Ý1£¬
an
2n
=(
a
2
)n¡Ý
a
2
£¬¡àan¡Ý
a
2
2n
£¬
¡àbnan¡Ýbn
a
2
2n=
a
2
bn2n
£®
¡àTn=
n
i=1
(
1
2
biai)¡Ý
a
2
n
i=1
(bi2i-1)=
a
2
1
2
(
1
1+2
-
1
2n+1+1
)
£®
ÓÉ£¨¢¡£©Öª´æÔÚn0¡ÊN*£¬µ±n¡Ýn0ʱ£¬
1
2
(
1
1+2
-
1
2n+1+1
)£¾
1
3a
£¬
¹Ê´æÔÚn0¡ÊN*£¬µ±n¡Ýn0ʱ£¬Tn=
a
2
1
2
(
1
1+2
-
1
2n+1+1
)£¾
a
2
1
3a
=
1
6
£¬²»Âú×ãÌõ¼þ£®£¨12·Ö£©
£¨¢££©µ±0£¼a£¼2ʱ£¬¡ßn¡Ý1£¬
an
2n
=(
a
2
)n¡Ü
a
2
£¬¡àan¡Ü
a
2
2n
£¬
¡àbnan¡Übn
a
2
2n=
a
2
bn2n
£®
¡àTn=
n
i=1
1
2
(biai)¡Ü
n
i=1
a
2
(bi2i-1)=
a
2
1
2
(
1
1+2
-
1
2n+1+1
)
£®
È¡m=
a
12
¡Ê(0£¬
1
6
)
£¬Èô´æÔÚn0¡ÊN*£¬µ±n¡Ýn0ʱ£¬Tn£¾m£¬
Ôò
a
2
1
2
(
1
1+2
-
1
2n+1+1
)£¾
a
12
£®
¡à
1
1+2
-
1
2n+1+1
£¾
1
3
ì¶Ü£®¹Ê²»´æÔÚn0¡ÊN*£¬
µ±n¡Ýn0ʱ£¬Tn£¾m£®²»Âú×ãÌõ¼þ£®
×ÛÉÏËùÊö£ºÖ»ÓÐa=2ʱÂú×ãÌõ¼þ£¬¹Êa=2£®£¨14·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÀÛ¼Ó·¨ÇóͨÏÁÑÏîÏàÏû·¨ÇóºÍ£¬¾ßÌåµ½Ò»°ã·ÖÀàÌÖÂÛµÈ˼Ïë·½·¨µÄÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}ÖУ¬a1=1£¬an+1-an=
1
3n+1
(n¡ÊN*)
£¬Ôò
lim
n¡ú¡Þ
an
=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}ÖУ¬a1=1£¬an+1=
an
1+2an
£¬Ôò{an}µÄͨÏʽan=
1
2n-1
1
2n-1
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}ÖУ¬a1=1£¬a1+2a2+3a3+¡­+nan=
n+1
2
an+1(n¡ÊN*)
£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÇóÊýÁÐ{
2n
an
}
µÄÇ°nÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}ÖУ¬a1=
1
2
£¬Sn
ΪÊýÁеÄÇ°nÏîºÍ£¬ÇÒSnÓë
1
an
µÄÒ»¸öµÈ±ÈÖÐÏîΪn(n¡ÊN*
£©£¬Ôò
lim
n¡ú¡Þ
Sn
=
1
1
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}ÖУ¬a1=1£¬2nan+1=£¨n+1£©an£¬ÔòÊýÁÐ{an}µÄͨÏʽΪ£¨¡¡¡¡£©
A¡¢
n
2n
B¡¢
n
2n-1
C¡¢
n
2n-1
D¡¢
n+1
2n

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸