【题目】已知函数f(x)= 为奇函数.
(1)求实数a的值;
(2)试判断函数的单调性并加以证明;
(3)对任意的x∈R,不等式f(x)<m恒成立,求实数m的取值范围.
【答案】
(1)解:由函数为奇函数可得f(0)= =0,解得a=﹣1
(2)解:由(1)可得f(x)= = =1﹣ ,
可得函数在R上单调递增,下面证明:
任取实数x1<x2,则f(x1)﹣f(x2)
= ﹣ = <0,
∴函数f(x)= R上的增函数
(3)解:∵函数f(x)为增函数,当x趋向于正无穷大时,f(x)趋向于1,
要使不等式f(x)<m恒成立,则需m≥1
【解析】(1)解f(0)=0可得a值;(2)由单调性的定义可得;(3)由(1)(2)可得函数f(x)为增函数,当x趋向于正无穷大时,f(x)趋向于1,可得m≥1.
【考点精析】关于本题考查的函数单调性的判断方法和函数奇偶性的性质,需要了解单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较;在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的前n项和为Sn , 且a3=7,a5+a7=26
(1)求an及Sn;
(2)令bn= (n∈N*)求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)= (x∈R)且x≠﹣1,g(x)=x2+2(x∈R).
(1)求f(2),g(2)的值;
(2)求f[g(2)]的值;
(3)求f[g(x)]和g[f(x)]的解析式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面α与平面β相交于直线l,l1在平面α内,l2在平面β内,若直线l1和l2是异面直线,则下列说法正确的是( )
A.l与都相交l1 , l2
B.l至少与l1 , l2中的一条相交
C.l至多与l1 , l2中的一条相交
D.l与l1 , l2都不相交
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司每个工作日由位于市区的总公司向位于郊区的分公司开一个来回的班车(每年按200个工作日计算),现有两种使用班车的方案,方案一是购买一辆大巴,需花费90万元,报废期为10年,车辆平均每年的各种费用合计5万元,司机年工资6万元,司机每天请假的概率为0.1(每年请假时间不超过15天不扣工资,超过15天每天100元),若司机请假则需从公交公司雇佣司机,每天支付300元工资.方案二是租用公交公司的车辆(含司机),根据调研每年12个月的车辆需求指数如直方图所示,其中当某月车辆需求指数在时,月租金为万元.
(1)若购买大巴,设司机每年请假天数为,求公司因司机请假而增加的花费(元)及使用班车年平均花费(万元)的数学期望.
(2)试用调研数据,给出公司使用班车的建议,使得年平均花费最少.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=x+ (a>0)在区间 上单调递减,在区间 上单调递增;函数
(1)请写出函数f(x)=x2+ (a>0)与函数g(x)=xn+ (a>0,n∈N,n≥3)在(0,+∞)的单调区间(只写结论,不证明);
(2)求函数h(x)的最值;
(3)讨论方程h2(x)﹣3mh(x)+2m2=0(0<m≤30)实根的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ,若存在实数x1 , x2 , x3 , x4 , 满足x1<x2<x3<x4 , 且f(x1)=f(x2)=f(x3)=f(x4),则 的取值范围是( ).
A.(0,4)
B.(0, )
C.( , )
D.( , )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A﹣3cos(B+C)=1.
(Ⅰ)求角A的大小;
(Ⅱ)若△ABC的面积S=5 ,b=5,求sinBsinC的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com