分析 由题意,可得BC+AC=10>AB,故顶点A的轨迹是以A、B为焦点的椭圆,除去与x轴的交点,利用椭圆的定义和简单性质 求出a、b 的值,即得顶点C的轨迹方程.
解答 解:由题意,可得BC+AC=10>AB,故顶点A的轨迹是以A、B为焦点的椭圆,除去与x轴的交点.
∴2a=10,c=3∴b=4,故顶点C的轨迹方程为$\frac{x^2}{25}+\frac{y^2}{16}=1(y≠0)$,
故答案为:$\frac{x^2}{25}+\frac{y^2}{16}=1(y≠0)$.
点评 本题考查椭圆的定义、标准方程,以及简单性质的应用.解题的易错点:最后不检验满足方程的点是否都在曲线上.
科目:高中数学 来源: 题型:选择题
A. | {x|-1≤x≤1} | B. | {x|x≥0} | C. | {x|0≤x≤1} | D. | ∅ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | $\frac{π}{3}$ | $\frac{5π}{6}$ | |||
Asin(ωx+φ) | 0 | 5 | -5 | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {x|-$\frac{9}{2}$≤x≤1} | B. | {x|-1≤x≤$\frac{9}{2}$} | C. | {x|x≤-$\frac{9}{2}$或x≥1} | D. | {x|x≤-1或x≥$\frac{9}{2}$} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ①② | B. | ②③ | C. | ①③ | D. | ①③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $({-∞,-\frac{1}{2}}]$ | B. | $[{-\frac{1}{2},+∞})$ | C. | $[{-\frac{1}{2},0})$ | D. | $[-\frac{1}{2},0]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 平面α内任一向量$\overrightarrow{a}$,都有$\overrightarrow{a}$=λ$\overrightarrow{{e}_{1}}$+μ$\overrightarrow{{e}_{2}}$(λ,μ∈R) | |
B. | 若存在实数λ1,λ2,使λ1$\overrightarrow{{e}_{1}}$+λ2$\overrightarrow{{e}_{2}}$=0,则λ1=λ2=0 | |
C. | 若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$不共线,则空间任一向量$\overrightarrow{a}$,都有$\overrightarrow{a}$=λ$\overrightarrow{{e}_{1}}$+μ$\overrightarrow{{e}_{2}}$(λ,μ∈R) | |
D. | 若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$不共线,则平面任一向量$\overrightarrow{a}$,都有$\overrightarrow{a}$=λ$\overrightarrow{{e}_{1}}$+μ$\overrightarrow{{e}_{2}}$(λ,μ∈R) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com