精英家教网 > 高中数学 > 题目详情
若实数x,y满足
x+y≥1
x-y+1≥0
6x-y-14≤0
,则(
1
9
)x
(
1
3
)y
的最小值为
 
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用目标函数的几何意义,即可求最小值.
解答: 解:(
1
9
)x
(
1
3
)y
=(
1
3
)2x+y
,令z=2x+y,
作出不等式组对应的平面区域如图:
z=2x+y,得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最小,
此时z最小.
x+y=1
x-y+1=0
,解得
x=0
y=1
,即A(0,1),
代入目标函数z=2x+y得z=0+1=1.
(
1
9
)x
(
1
3
)y
的最小值为为(
1
3
)2x+y
=
1
3

故答案为:
1
3
点评:本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

点P(x,y)在不等式组
x≥0
x+y≤3
y≥x+1
表示的平面区域内,若点P(x,y)到直线y=kx-1的最大距离为2
2
,则k为(  )
A、-1B、-1或1
C、-1或2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线的极坐标方程为ρsin(θ+
π
4
)
=1,则点A(2,
π
4
)到这条直线的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:
x2
3
-y2=1的左右焦点分别为F1F2,过点F2的直线与双曲线C的右支相交于P,Q两点,且点P的横坐标为2,则PF1Q的周长为(  )
A、
16
3
3
B、5
3
C、
14
3
3
D、4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在菱形ABCD中AC=2,BD=4,将△ACD沿着AC折起,使点D翻折到D′位置,连BD′,直线BD′与平面ABC所成的角为30°,如图所示.
(1)求证AC⊥BD′;
(2)若E为AB中点,过C作平面ABC的垂线l,直线l上是否存在一点F,使EF∥平面AD′C?若存在,求出CF的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|2≤x≤4},设函数p(x)=lg(x2-3x)的定义域为集合B,全集为R.
 (1)求A∩B;
 (2)求A∪∁RB.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
sinxcosx-cos2x,x∈R.
(1)求函数f(x)的单调递增区间;
(2)在△ABC中,内角A、B、C所对边的长分别是a、b、c,若f(A)=2,C=
π
4
,c=2,求△ABC的面积S△ABC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某数列第一项为1,并且对所有n≥2,n∈N*,数列的前n项之积n2,则当n≥2时,有(  )
A、an=2n-1
B、an=n2
C、an=
n2
(n-1)2
D、an=
(n+1)2
n2

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,定义点P(x1,y1)、Q(x2,y2)之间的直角距离为d(P,Q)=|x1-x2|+|y1-y2|若点A(x,1),B(1,4),C(2,5),且d(A,B)≥d(A,C),则x的取值范围为
 

查看答案和解析>>

同步练习册答案