精英家教网 > 高中数学 > 题目详情
已知矩阵,矩阵,直线l1:x-y+4=0经矩阵A所对应的变换得直线l2,直线l2又经矩阵B所对应的变换得直线l3:x+y+4=0,求直线l2的方程.
解:
得l1到l3的变换公式
即为直线l1:x-y+4=0,
则有,解得:
此时
同理可得l2的方程为2y-x+4=0,
即x-2y-4=0。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网选做题本题包括A,B,C,D四小题,请选定其中 两题 作答,每小题10分,共计20分,
解答时应写出文字说明,证明过程或演算步骤.
A选修4-1:几何证明选讲
自圆O外一点P引圆的一条切线PA,切点为A,M为PA的中点,过点M引圆O的割线交该圆于B、C两点,且∠BMP=100°,∠BPC=40°,求∠MPB的大小.
B选修4-2:矩阵与变换
已知二阶矩阵A=
ab
cd
,矩阵A属于特征值λ1=-1的一个特征向量为α1=
1
-1
,属于特征值λ2=4的一个特征向量为α2=
3
2
.求矩阵A.
C选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知曲线C的参数方程为
x=2cosα
y=sinα
(α为参数)
.以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ-
π
4
)=2
2
.点
P为曲线C上的动点,求点P到直线l距离的最大值.
D选修4-5:不等式选讲
若正数a,b,c满足a+b+c=1,求
1
3a+2
+
1
3b+2
+
1
3c+2
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

[选做题]在A、B、C、D四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内.
A.(选修4-1:几何证明选讲)
如图,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E,求线段AE的长.
B.(选修4-2:矩阵与变换)
已知二阶矩阵A有特征值λ1=3及其对应的一个特征向量α1=
1
1
,特征值λ2=-1及其对应的一个特征向量α2=
1
-1
,求矩阵A的逆矩阵A-1
C.(选修4-4:坐标系与参数方程)
以平面直角坐标系的原点O为极点,x轴的正半轴为极轴,建立极坐标系(两种坐标系中取相同的单位长度),已知点A的直角坐标为(-2,6),点B的极坐标为(4,
π
2
)
,直线l过点A且倾斜角为
π
4
,圆C以点B为圆心,4为半径,试求直线l的参数方程和圆C的极坐标方程.
D.(选修4-5:不等式选讲)
设a,b,c,d都是正数,且x=
a2+b2
y=
c2+d2
.求证:xy≥
(ac+bd)(ad+bc)

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省南安一中高二下学期期末考试数学(理) 题型:解答题

(本小题满分12分)
(1)(本小题满分5分)选修4-2:矩阵与变换。已知矩阵,A的一个特征值,属于λ的特征向量是,求矩阵A与其逆矩阵.
(2) (本小题满分7分)选修4—4:坐标系与参数方程
已知直线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,在曲线上求一点,使它到直线的距离最小,并求出该点坐标和最小距离.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三上学期期末考试数学理卷 题型:解答题

(本小题满分14分)

本题是选作题,考生只能选做其中两个小题.三个小题都作答的,以前两个小题计算得分。

①选修4-4《坐标系与参数方程》选做题(本小题满分7分)

已知曲线C的参数方程是为参数),且曲线C与直线=0相交于两点A、B求弦AB的长。

②选修4-2《矩阵与变换》选做题(本小题满分7分)

已知矩阵的一个特征值为,它对应的一个特征向量

(Ⅰ)求矩阵M;

(Ⅱ)点P(1, 1)经过矩阵M所对应的变换,得到点Q,求点Q的坐标。

③选修4-5《不等式选讲》选做题(本小题满分7分)

函数的图象恒过定点,若点在直线上,其中

,求的最小值。

查看答案和解析>>

同步练习册答案