【题目】某商场准备在今年的“五一假”期间对顾客举行抽奖活动,举办方设置了两种抽奖方案,方案的中奖率为,中奖可以获得分;方案的中奖率为,中奖可以获得分;未中奖则不得分,每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,并凭分数兑换奖品,
(1)若顾客甲选择方案抽奖,顾客乙选择方案抽奖,记他们的累计得分为,若的概率为,求
(2)若顾客甲、顾客乙两人都选择方案或都选择方案进行抽奖,问:他们选择何种方案抽奖,累计得分的均值较大?
【答案】(1)(2)当时,他们都选择方案进行抽奖时,累计得分的均值较大;当时,他们都选择方案进行抽奖时,累计得分的均值较大;当时,他们都选择方案或都选择方案进行抽奖时,累计得分的均值相等
【解析】
(1)首先求解出对立事件“”的概率,再根据对立事件概率公式求得结果;(2)利用二项分布均值公式求解出和,根据均值的性质求得两人全选方案或方案的均值,比较两个均值的大小,得到不同取值的情况下应选取的方案.
(1)由已知得,甲中奖的概率为,乙中奖的概率为,且两人中奖与否互不影响
记“这人的累计得分”的事件为,则事件的对立事件为“”
(2)设甲、乙都选择方案抽奖的中奖次数为,都选择方案抽奖的中奖次数为
则这两人选择方案抽奖累计得分的均值为,选择方案抽奖累计得分的均值为
由已知可得:,
,
,
若,则
若,则
若,则
综上所述:当时,他们都选择方案进行抽奖时,累计得分的均值较大
当时,他们都选择方案进行抽奖时,累计得分的均值较大
当时,他们都选择方案或都选择方案进行抽奖时,累计得分的均值相等
科目:高中数学 来源: 题型:
【题目】设a,b,c分别是的三条边,且.我们知道,如果为直角三角形,那么(勾股定理).反过来,如果,那么为直角三角形(勾股定理的逆定理).由此可知,为直角三角形的充要条件是.请利用边长a,b,c分别给出为锐角三角形和钝角三角形的一个充要条件,并证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2sin2(x+)-2cos(x-)-5a+2.
(1)设t=sinx+cosx,将函数f(x)表示为关于t的函数g(t),求g(t)的解析式;
(2)对任意x∈[0,],不等式f(x)≥6-2a恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,且
()求数列的通项公式;
()若数列满足,求数列的通项公式;
()在()的条件下,设,问是否存在实数使得数列是单调递增数列?若存在,求出的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了如图所示的折线图.根据该折线图,下列结论错误的是( )
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com