精英家教网 > 高中数学 > 题目详情
12.已知函数y=ax(a>0且a≠1)在区间[0,1]的最大值与最小值之和为3,则函数f(x)=a1-2x,x∈[-3,3]满足:①f(x)是奇函数;②f(x)是增函数;③f(x)是减函数;④f(x)有最小值$\frac{1}{32}$,其中正确的序号是(  )
A.③④B.②④C.①③D.①②

分析 由题意和指数函数的单调性求出a的值,可求出正确的序号是f(x)的解析式,由函数奇偶性的定义、指数函数、复合函数的单调性,可判断出f(x)的奇偶性、单调性和最值问题,即可得到答案.

解答 解:由题意可得,a0+a1=3,解得a=2,
则f(x)=a1-2x=21-2x
所以f(x)是非奇非偶函数,在[-3,3]上是减函数,
则在区间[-3,3]上f(x)有最小值为f(3)=21-6=$\frac{1}{32}$,
所以正确的序号是③④,
故选:A.

点评 本题考查数奇偶性的定义、指数函数、复合函数的单调性的综合应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若实数x满足x>-4,则函数f(x)=x+$\frac{9}{x+4}$的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.△ABC的内角A,B,C的对边分别为a,b,c,若acosC+ccosA=bsinB,则△ABC的形状一定是(  )
A.等边三角形B.直角三角形
C.钝角三角形D.不含60°角的等腰三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.解关于x的不等式:mx2-(4m+1)x+4>0(m∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.f(x)=$\left\{\begin{array}{l}{ln(x+1)-\frac{1}{1+{x}^{2}},x≥0}\\{ln(-x+1)-\frac{1}{1+{x}^{2}},x<0}\end{array}\right.$,则使得f(a-2)<f(4-a2)成立的a取值范围是a>2或a<-3或-1<a<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知tana=2,求$\frac{tan2a-tana}{1+tan2atana}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.计算$\frac{2}{3}$lg8+lg25-3${\;}^{2lo{g}_{3}5}$+16${\;}^{\frac{3}{4}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若α为锐角,满足cosα+2sinα=$\frac{\sqrt{10}}{2}$,则tanα=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.正项等差数列{an}满足a1=4,且a2,a3+4,2a6-4成等比数列,an前n项和为Sn
(1)求数列{an}的通项公式;
(2)求证:$\frac{2}{{S}_{1}+2}$+$\frac{2}{{S}_{2}+2}$+…+$\frac{2}{{S}_{n}+2}$<1.

查看答案和解析>>

同步练习册答案