精英家教网 > 高中数学 > 题目详情

【题目】已知圆C1与y轴交于O,A两点,圆C2过O,A两点,且直线C2O恰与圆C1相切;

1求圆C2的方程。

2若圆C2上一动点M,直线MO与圆C1的另一交点为N,在平面内是否存在定点P使得PM=PN始终成立,若存在,求出定点坐标,若不存在,说明理由。

【答案】12存在,且为

【解析】

试题分析:1由圆方程求得它与轴交点坐标,可设圆的一般方程,利用O,A在圆上可得,这样可写出圆心坐标,利用切线即可求得2如果存在,则在线段的中垂线上,假设直线方程为,与两圆方程联立可解得坐标,求出线段的垂直平分线的方程,由直线方程观察它是否过一个定点,如果过定点就是所要求的点.

试题解析:1O0,0,A0,4,设圆C2的方程为,易得F=0,E=-4.故C2-,由C2OC1O得D=2,故圆C2的方程为

2存在,设MN直线方程为y=kx,分别与圆C1、圆C2联立

求得M

N,中点H,中垂线方程为:

,化简为:

恒过定点3,4即为所求点P。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(A)已知平行四边形中, 的中点, .

(1)求的长;

(2)设 为线段上的动点,且,求的最小值.

(B)已知平行四边形中, 的中点, .

(1)求的长;

(2)设为线段上的动点(不包含端点),求的最小值,以及此时点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的最小值;

2)若对任意x∈[1,+),fx>0恒成立,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经过长期观测得到:在交通繁忙的时段内,某公路汽车的车流量(千辆/ )与汽车的平均速度之间的函数关系式为

(I)若要求在该段时间内车流量超过2千辆/ ,则汽车在平均速度应在什么范围内?

(II)在该时段内,当汽车的平均速度为多少时,车流量最大?最大车流量为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量共线,其中AABC的内角.

1)求角的大小;

2)若BC=2,求ABC面积的最大值,并判断S取得最大值时ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题:,使等式成立是真命题.

1求实数的取值集合

2设不等式的解集为,若的必要不充分条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12分已知数列满足,若等比数列,且

1

2,记数列的前项和为

I

II求正整数,使得对任意均有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中将底面为直角三角形的直棱柱称为堑堵,将底面为矩形的棱台称为刍童.在如图所示的堑堵与刍童的组合体中,.台体体积公式:,其中分别为台体上、下底面面积,为台体高.

(Ⅰ)证明:直线 平面

(Ⅱ)若,,三棱锥的体积,求该组合体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过原点的动直线与圆 交于两点.

(1)若,求直线的方程;

(2)轴上是否存在定点,使得当变动时,总有直线的斜率之和为0?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案