精英家教网 > 高中数学 > 题目详情
(理)已知二次函数f(x)=x2+2bx+c(b、c∈R)满足f(1)=0,且关于x的方程f(x)+x+b=0的两个实数根分别在区间(-3,-2)、(0,1)内.

(1)求实数b的取值范围;

(2)若函数F(x)=logbf(x)在区间(-1-c,1-c)上具有单调性,求实数c的取值范围.

(文)已知二次函数f(x)=x2+2bx+c(b、c∈R).

(1)若f(x)≤0的解集为{x|-1≤x≤1},求实数b、c的值;

(2)若f(x)满足f(1)=0,且关于x的方程f(x)+x+b=0的两个实数根分别在区间(-3,-2)、(0,1)内,求实数b的取值范围.

答案:(理)解:(1)由题,知f(1)=1+2b+c=0,∴c=-1-2b.

记g(x)=f(x)+x+b=x2+(2b+1)x+b+c=x2+(2b+1)x-b-1,

即b∈().

(2)令u=f(x).∵0<<b<<1,∴logbu在(0,+∞)上是减函数.而-1-c=2b>-b,函数f(x)=x2+2bx+c的对称轴为x=-b,∴f(x)在区间(-1-c,1-c)上单调递增.从而函数F(x)=logbf(x)在(-1-c,1-c)上为减函数.

且f(x)在区间(-1-c,1-c)上恒有f(x)>0,只需要f(-1-c)≥0,

.

(文)解:(1)由题,知x1=-1,x2=1是方程x2+2bx+c=0的两个根.

由韦达定理,得

∴b=0,c=-1.

(2)由题,知f(1)=1+2b+c=0,∴c=-1-2b.2分记g(x)=f(x)+x+b=x2+(2b+1)x+b+c=x2+(2b+1)x-b-1,则

即b∈(,).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理)已知二次函数f(x)=ax2+bx+c,(a,b,c∈R)满足:对任意实数x,都有f(x)≥x,f(-2)=0,且当x∈(1,3)时,有f(x)≤
1
8
(x+2)2
成立.
(1)求f(x)的表达式.
(2)g(x)=4f′(x)-sinx-2数列{an}满足:an+1=g(an),0<a1<1,n=1,2,3,证明:(Ⅰ)0<an+1<an<1;(Ⅱ)an+1
1
6
an
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+x的定义域D 恰是不等式 f(-x)+f(x)≤2|x|的解集,其值域为A.函数 g(x)=x3-3tx+
1
2
t
的定义域为[0,1],值域为B.
(1)求f (x) 的定义域D和值域 A;
(2)(理) 试用函数单调性的定义解决下列问题:若存在实数x0∈(0,1),使得函数 g(x)=x3-3tx+
1
2
t
在[0,x0]上单调递减,在[x0,1]上单调递增,求实数t的取值范围并用t表示x0
(3)(理) 是否存在实数t,使得A⊆B成立?若存在,求实数t 的取值范围;若不存在,请说明理由.
(4)(文) 是否存在负实数t,使得A⊆B成立?若存在,求负实数t 的取值范围;若不存在,请说明理由.
(5)(文) 若函数g(x)=x3-3tx+
1
2
t
在定义域[0,1]上单调递减,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•闵行区一模)已知二次函数f(x)=ax2+bx+c(a>0,c>0)的图象与x轴有两个不同的公共点,且有f(c)=0,当0<x<c时,恒有f(x)>0.
(1)(文)当a=1,c=
12
时,求出不等式f(x)<0的解;
(2)(理)求出不等式f(x)<0的解(用a,c表示);
(3)若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为8,求a的取值范围;
(4)若f(0)=1,且f(x)≤m2-2km+1,对所有x∈[0,c],k∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年宜昌一中12月月考理)(14分)

已知二次函数

(1)若对任意x1x2∈R,且,都有,求证:关于x的方程有两个不相等的实数根且必有一个根属于();

    (2)若关于x的方程在()的根为m,且成等差数列,设函数f (x)的图象的对称轴方程为,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数f(x)=ax2+bx+c(a>0,c>0)的图象与x轴有两个不同的公共点,且有f(c)=0,当0<x<c时,恒有f(x)>0.
(1)(文)当a=1,数学公式时,求出不等式f(x)<0的解;
(2)(理)求出不等式f(x)<0的解(用a,c表示);
(3)若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为8,求a的取值范围;
(4)若f(0)=1,且f(x)≤m2-2km+1,对所有x∈[0,c],k∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案