精英家教网 > 高中数学 > 题目详情
18.下列关于四边形ABCD判断正确的是(  )
①若$\overrightarrow{AD}=\overrightarrow{BC}$,则四边形ABCD是平行四边形;
②若$\overrightarrow{AD}=\frac{1}{3}\overrightarrow{BC}$,则四边形ABCD是梯形;
③若$\overrightarrow{AB}=\overrightarrow{DC},且|\overrightarrow{AB}|=|\overrightarrow{AD}|$,则四边形ABCD是菱形;
④若$|\overrightarrow{AB}+\overrightarrow{AD}|=|\overrightarrow{AB}-\overrightarrow{AD}|$,则四边形ABCD是矩形.
A.②③④B.①②③C.①③④D.①②③④

分析 根据向量在几何中的应用问题,结合题意,对题目中的命题进行分析、判断正误即可.

解答 解:对于①,若$\overrightarrow{AD}=\overrightarrow{BC}$,则|$\overrightarrow{AD}$|=|$\overrightarrow{BC}$|且$\overrightarrow{AD}$∥$\overrightarrow{BC}$,四边形ABCD是平行四边形,①正确;
对于②,若$\overrightarrow{AD}=\frac{1}{3}\overrightarrow{BC}$,|$\overrightarrow{AD}$|≠|$\overrightarrow{BC}$且$\overrightarrow{AD}$∥||$\overrightarrow{BC}$,四边形ABCD是梯形,②正确;
对于③,由$\overrightarrow{AB}$=$\overrightarrow{DC}$得出四边形ABCD是平行四边形,
由|$\overrightarrow{AB}$|=|$\overrightarrow{AD}$|,得出平行四边形ABCD是菱形,③正确;
对于④,由$|\overrightarrow{AB}+\overrightarrow{AD}|=|\overrightarrow{AB}-\overrightarrow{AD}|$,得${(\overrightarrow{AB}+\overrightarrow{AD})}^{2}$=${(\overrightarrow{AB}-\overrightarrow{AD})}^{2}$,
即${\overrightarrow{AB}}^{2}$+2$\overrightarrow{AB}$•$\overrightarrow{AD}$+${\overrightarrow{AD}}^{2}$=${\overrightarrow{AB}}^{2}$-2$\overrightarrow{AB}$•$\overrightarrow{AD}$+${\overrightarrow{AD}}^{2}$,
∴$\overrightarrow{AB}$•$\overrightarrow{AD}$=0即AB⊥AD,如图所示

又四边形ABCD不一定是平行四边形,
∴四边形ABCD不一定是矩形,④错误.
综上,正确命题的序号为①②③.
故选:B.

点评 本题主要考查了向量在几何中的应用以及数量积为0与两向量垂直的关系,也考查了分析问题的能力,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.直线l的斜率k为$-\frac{3}{4}$,则直线l的倾斜角为π-arctan$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知对于任意两个实数x,y,都有f(x+y)=f(x)+f(y)成立.若f(-3)=2,则f(2)=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{4}{3}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.计算:
(1)$\frac{(-1+i)(2+i)}{i^3}$;             
(2)$\frac{{{{(1+2i)}^2}}}{3-4i}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)满足$2f({\frac{x-1}{x}})+f({\frac{x+1}{x}})=1+x$,其中x∈R且x≠0,则函数f(x)的解析式为f(x)=$\frac{1}{3}$-$\frac{1}{x-1}$(x≠1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设f-1(x)为f(x)=3x-1+x-1,x∈[0,1]的反函数,则y=f(x)+f-1(x)的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知二次函数f(x)=ax2+(a-1)x+a.
(1)试讨论函数y=f(x)的奇偶性,并说明理由;
(2)若函数$g(x)=f(x)+\frac{{1-({a-1}){x^2}}}{x}$在(2,3)上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.对于定义域分别为Df、Dg的函数f(x)、g(x),规定:$h(x)=\left\{\begin{array}{l}f(x)•g(x)\;\;\;当x∈{D_f}且x∈{D_g}时\\ f(x)\;\;\;\;\;\;\;\;\;\;\;\;当x∈{D_f}且x∉{D_g}时\\ g(x)\;\;\;\;\;\;\;\;\;\;\;\;当x∉{D_f}且x∈{D_g}时\end{array}\right.$
(1)设$f(x)=\frac{1}{x}\;,\;\;g(x)=4{x^2}+1$,写出h(x)的解析式.
(2)求(1)中函数h(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列说法中,正确的是(  )
A.命题“若am2<bm2,则a<b”的逆命题是真命题
B.命题“若x=y,则sinx=siny”的逆否命题为真命题
C.命题“p或q”为真命题,则命题“p”和命题“q”均为真命题
D.若p∧q为假命题,则p、q均为假命题

查看答案和解析>>

同步练习册答案