【题目】若函数满足:对于任意正数,都有,且,则称函数为“L函数”.
(1)试判断函数与是否是“L函数”;
(2)若函数为“L函数”,求实数a的取值范围;
(3)若函数为“L函数”,且,求证:对任意,都有.
科目:高中数学 来源: 题型:
【题目】设定义在R上的偶函数f(x),满足对任意x∈R都有f(t)=f(2﹣t)且x∈(0,1]时,f(x)= ,a=f( ),b=f( ),c=f( ),用“<“表示a,b,c的大小关系是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC﹣A1B1C1中,侧面ABB1A1⊥底面ABC,CA=CB,D,E,F分别为AB,A1D,A1C的中点,点G在AA1上,且A1D⊥EG.
(1)求证:CD∥平面EFG;
(2)求证:A1D⊥平面EFG.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某媒体为了解某地区大学生晚上放学后使用手机上网情况,随机抽取了100名大学生进行调查.如图是根据调查结果绘制的学生每晚使用手机上网平均所用时间的频率分布直方图.将时间不低于40分钟的学生称为“手机迷”.
(1)样本中“手机迷”有多少人?
(2)根据已知条件完成下面的2×2列联表,并据此资料判断是否有95%的把握认为“手机迷”与性别有关?
(3)将上述调查所得到的频率视为概率.现在从该地区大量大学 生中,采用随机抽样方法每次抽取1名大学生,抽取3次,经调查一名“手机迷”比“非手机迷”每月的话费平均多40元,记被抽取的3名大学生中的“手机迷”人数为X,且设3人每月的总话费比“非手机迷”共多出Y元,若每次抽取的结果是相互独立的,求X的分布列和Y的期望EY
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.
(1)求第一次检测出的是次品且第二次检测出的是正品的概率;
(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等差数列{an}的前n项和为Sn , a2=4,S5=30
(1)求数列{an}的通项公式an
(2)设数列{ }的前n项和为Tn , 求证: ≤Tn< .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足an+1+an=4n﹣3,n∈N*
(1)若数列{an}是等差数列,求a1的值;
(2)当a1=﹣3时,求数列{an}的前n项和Sn;
(3)若对任意的n∈N* , 都有 ≥5成立,求a1的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2017重庆二诊】“微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:
(1)已知某人一天的走路步数超过8000步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?
附: ,
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
(2)若小王以这40位好友该日走路步数的频率分布来估计其所有微信好友每日走路步数的概率分布,现从小王的所有微信好友中任选2人,其中每日走路不超过5000步的有人,超过10000步的有人,设,求的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com