精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=cosωx(sinωx+ cosωx)(ω>0),如果存在实数x0 , 使得对任意的实数x,都有f(x0)≤f(x)≤f(x0+2016π)成立,则ω的最小值为( )
A.
B.
C.
D.

【答案】D
【解析】解:由题意可得,f(x0)是函数f(x)的最小值,f(x0+2016π)是函数f(x)的最大值.
显然要使结论成立,只需保证区间[x0 , x0+2016π]能够包含函数的至少一个完整的单调区间即可.
又f(x)=cosωx(sinωx+ cosωx)= sin2ωx+ =sin(2ωx+ )+
故2016π≥ ,求得ω≥
故则ω的最小值为
故选:D.
【考点精析】利用两角和与差的余弦公式和两角和与差的正弦公式对题目进行判断即可得到答案,需要熟知两角和与差的余弦公式:;两角和与差的正弦公式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】先把正弦函数y=sinx图象上所有的点向左平移 个长度单位,再把所得函数图象上所有的点的纵坐标缩短到原来的 倍(横坐标不变),再将所得函数图象上所有的点的横坐标缩短到原来的 倍(纵坐标不变),则所得函数图象的解析式是(
A.y=2sin( x+
B.y= sin(2x﹣
C.y=2sin( x﹣
D.y= sin(2x+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的正方形,侧面PAD⊥底面ABCD,且PA=PD= AD.
(1)求证:平面PAB⊥平面PDC
(2)在线段AB上是否存在一点G,使得二面角C﹣PD﹣G的余弦值为 .若存在,求 的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象如图所示,则以下步骤可以得到函数f(x)的图象的是(

A.将y=sinx的图象上的点纵坐标不变,横坐标变成原来的2倍,然后再向左平移 个单位
B.将y=sinx的图象上的点纵坐标不变,横坐标变成原来的2倍,然后再向右平移 个单位
C.将y=sinx的图象上的点纵坐标不变,横坐标变成原来的 ,然后再向右平移 个单位
D.将y=sinx的图象上的点纵坐标不变,横坐标变成原来的 ,然后再向左平移 个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某个品牌的U盘进行寿命追踪调查,所得情况如下面频率分布直方图所示.
(1)图中纵坐标y0处刻度不清,根据图表所提供的数据还原y0
(2)根据图表的数据按分层抽样,抽取20个U盘,寿命为1030万次之间的应抽取几个;
(3)从(2)中抽出的寿命落在1030万次之间的元件中任取2个元件,求事件“恰好有一个寿命为1020万次,一个寿命为2030万次”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示,在这些用户中,用电量落在区间[150,250)内的户数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)在R上存在导数f′(x),x∈R,有f(﹣x)+f(x)=x2 , 在(0,+∞)上f′(x)<x,若f(4﹣m)﹣f(m)≥8﹣4m.则实数m的取值范围为(
A.[﹣2,2]
B.[2,+∞)
C.[0,+∞)
D.(﹣∞,﹣2]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= .(x>0)
(1)函数f(x)在区间(0,+∞)上是增函数还是减函数?证明你的结论;
(2)若当x>0时,f(x)> 恒成立,求正整数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合M是R的子集,如果点x0∈R满足:a>0,x∈M,0<|x﹣x0|<a,称x0为集合M的聚点.则下列集合中以1为聚点的有( ) ①

③Z;
④{y|y=2x}.
A.①④
B.②③
C.①②
D.①②④

查看答案和解析>>

同步练习册答案