精英家教网 > 高中数学 > 题目详情

【题目】某中学为了解高一学生的视力健康状况,在高一年级体检活动中采用统一的标准对数视力表,按照《中国学生体质健康监测工作手册》的方法对1039名学生进行了视力检测,判断标准为:双眼裸眼视力为视力正常, 为视力低下,其中为轻度, 为中度, 为重度.统计检测结果后得到如图所示的柱状图.

(1)求该校高一年级轻度近视患病率;

(2)根据保护视力的需要,需通知检查结果为“重度近视”学生的家长带孩子去医院眼科进一步检查和确诊,并开展相应的矫治,则该校高一年级需通知的家长人数约为多少人?

(3)若某班级6名学生中有2人为视力正常,则从这6名学生中任选2人,恰有1人视力正常的概率是多少?

【答案】(1) ;(2)135人;(3) .

【解析】试题分析:

(1)由柱状图计算可得该校高一年级学生轻度近视患病率为.

(2)由已知计算可得:该校高一年级需通知的家长人数约为.

(3)6名学生中视力正常的学生为 ,视力低下的学生为 列出所有可能的基本事件,结合古典概型计算公式可得恰有1人视力正常的概率是.

试题解析:

(1)由柱状图可得:

即该校高一年级学生轻度近视患病率为.

(2)由已知可得: ()

即该校高一年级需通知的家长人数约为135.

(3)6名学生中视力正常的学生为 ,视力低下的学生为

则从中任选2人所有可能为:

.

即从这6名学生中任选2人恰有1人为视力正常的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《九章算术》中,将底面为直角三角形且侧棱垂直于底面的三棱柱称之为堑堵;将底面为矩形且一侧棱垂直于底面的四棱锥称之为阳马;将四个面均为直角三角形的四面体称之为鳖臑[biē nào].某学校科学小组为了节约材料,拟依托校园内垂直的两面墙和地面搭建一个堑堵形的封闭的实验室,是边长为2的正方形.

(1)若上,四面体是否为鳖臑,若是,写出其每个面的直角:若不是,请说明理由;

2)当阳马的体积最大时,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是两条不同直线,是两个不同平面,则下列命题正确的是 ( )

A. 垂直于同一平面,则平行

B. ,则

C. 不平行,则在内不存在与平行的直线

D. 不平行,则不可能垂直于同一平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知椭圆的离心率为,左焦点,直线与椭圆交于两点, 为椭圆上异于的点.

1)求椭圆的方程;

2)若,以为直径的圆点,求圆的标准方程;

3)设直线轴分别交于,证明: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】时,

)求

)猜想的关系,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是菱形,,,,底面,,点在棱上,且

(1)证明:面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,得到如图的频率分布直方图(图1.

1)若直方图中后四组的频数成等差数列,试估计全年级视力在5.0以下的人数;

2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在150名和9511000名的学生进行了调查,得到图2中数据,根据表中的数据,能否在犯错误的概率不超过0.05的前提下认为视力与学习成绩有关系?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】先后2次抛掷一次骰子,将得到的点数分别记为

1)求直线与圆相切的概率;

2)将4的值分别作为三条线段的长,求这三条线段能围成等腰三角形(含等边三角形)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是2018年第一季度五省GDP情况图,则下列描述中不正确的是( )

A. 与去年同期相比2018年第一季度五个省的GDP总量均实现了增长

B. 2018年第一季度GDP增速由高到低排位第5的是浙江省

C. 2018年第一季度GDP总量和增速由高到低排位均居同一位的省只有1

D. 去年同期河南省的GDP总量不超过4000亿元

查看答案和解析>>

同步练习册答案