精英家教网 > 高中数学 > 题目详情

【题目】设A是单位圆x2+y2=1上的任意一点,l是过点A与x轴垂直的直线,D是直线l与x轴的交点,点M在直线l上,且满足丨DM丨=m丨DA丨(m>0,且m≠1).当点A在圆上运动时,记点M的轨迹为曲线C.
(1)求曲线C的方程,判断曲线C为何种圆锥曲线,并求焦点坐标;
(2)过原点且斜率为k的直线交曲线C于P、Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,请说明理由.

【答案】
(1)解:如图1,设M(x,y),A(x0,y0

∵丨DM丨=m丨DA丨,∴x=x0,|y|=m|y0|

∴x0=x,|y0|= |y|①

∵点A在圆上运动,∴

①代入②即得所求曲线C的方程为

∵m∈(0,1)∪(1,+∞),

∴0<m<1时,曲线C是焦点在x轴上的椭圆,两焦点坐标分别为( ),

m>1时,曲线C是焦点在y轴上的椭圆,两焦点坐标分别为( ),


(2)解:如图2、3,x1∈(0,1),设P(x1,y1),H(x2,y2),则Q(﹣x1,﹣y1),N(0,y1),

∵P,H两点在椭圆C上,∴

①﹣②可得

∵Q,N,H三点共线,∴kQN=kQH,∴

∴kPQkPH=

∵PQ⊥PH,∴kPQkPH=﹣1

∵m>0,∴

故存在 ,使得在其对应的椭圆 上,对任意k>0,都有PQ⊥PH


【解析】(1)设M(x,y),A(x0 , y0),根据丨DM丨=m丨DA丨,确定坐标之间的关系x0=x,|y0|= |y|,利用点A在圆上运动即得所求曲线C的方程;根据m∈(0,1)∪(1,+∞),分类讨论,可确定焦点坐标;(2)x1∈(0,1),设P(x1 , y1),H(x2 , y2),则Q(﹣x1 , ﹣y1),N(0,y1),利用P,H两点在椭圆C上,可得 ,从而可得可得 .利用Q,N,H三点共线,及PQ⊥PH,即可求得结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场销售价与上市时间的关系用图(1)的一条折线表示;西红柿的种植成本与上市时间的关系用图(2)的抛物线段表示.

(1)写出图(1)表示的市场售价与时间的函数关系式写出图(2)表示的种植成本与时间的函数关系式

(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?(注:市场售价和种植成本的单位:元/kg,时间单位:天.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=sin(ωx+φ)的导函数y=f′(x)的部分图象如图所示,其中,P为图象与y轴的交点,A,C为图象与x轴的两个交点,B为图象的最低点.
(1)若φ= ,点P的坐标为(0, ),则ω=
(2)若在曲线段 与x轴所围成的区域内随机取一点,则该点在△ABC内的概率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上是增函数,则的取值范围是(  )

A. B. C. D.

【答案】C

【解析】

若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则x2﹣ax+3a>0且f(2)0,根据二次函数的单调性,我们可得到关于a的不等式,解不等式即可得到a的取值范围.

若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,

则当x∈[2,+∞)时,

x2﹣ax+3a>0且函数f(x)=x2﹣ax+3a为增函数

,f(2)=4+a>0

解得﹣4<a≤4

故选:C.

【点睛】

本题考查的知识点是复合函数的单调性,二次函数的性质,对数函数的单调区间,其中根据复合函数的单调性,构造关于a的不等式,是解答本题的关键.

型】单选题
束】
10

【题目】圆锥的高和底面半径之比,且圆锥的体积,则圆锥的表面积为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}前三项的和为﹣3,前三项的积为8.
(1)求等差数列{an}的通项公式;
(2)若a2 , a3 , a1成等比数列,求数列{|an|}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=,x∈(-2,2).

(1) 判断f(x)的奇偶性并说明理由;

(2) 求证:函数f(x)在(-2,2)上是增函数;

(3) 若f(2+a)+f(1-2a)>0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=x2+2mx+2m+3mR),若关于x的方程fx=0有实数根,且两根分别为x1x2,则(x1+x2x1x2,的最大值为()

A. B. 2C. 3D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于的不等式,其中为大于0的常数。

1)若不等式的解集为,求实数的取值范围;

2)若不等式的解集为,且中恰好含有一个整数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的长方体中,AB=2 ,AD= = ,E、F分别为 的中点,则异面直线DE、BF所成角的大小为( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案