精英家教网 > 高中数学 > 题目详情
14.球面上有3个点,其中任意两点的球面距离都等于大圆周长的$\frac{1}{6}$,经过这点的小圆周长为4π,求这个球的半径.

分析 因为正三角形ABC的外径r=2,故可以得到高,D是BC的中点.在△OBC中,又可以得到角以及边与R的关系,在Rt△ABD中,再利用直角三角形的勾股定理,即可解出R.

解答 解:因为正三角形ABC的外径r=2,故高AD=$\frac{3}{2}$r=3,D是BC的中点.
在△OBC中,BO=CO=R,∠BOC=$\frac{π}{3}$,所以BC=BO=R,BD=$\frac{1}{2}$BC=$\frac{1}{2}$R.
在Rt△ABD中,AB=BC=R,所以由AB2=BD2+AD2,得R2=$\frac{1}{4}$R2+9,所
以R=2$\sqrt{3}$.

点评 本题考查学生的空间想象能力,以及对球的性质认识及利用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的上顶点为B,右焦点为F,∠OFB=30°,P为线段BF的中点,且线段OP长为1.
(Ⅰ)试确定椭圆C的方程;
(Ⅱ)若直线l与圆E:x2+y2=3相切且交椭圆C于M,N两点,求△OMN面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在平面直角坐标系中,O是坐标原点,A($\sqrt{3}$,1),将OA绕点O逆时针旋转90°到OB,则点B的坐标为(-1,$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在等差数列{an}中,若S5=35,且a11=31,则公差d=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.“a<0”是函数“函数f(x)=|x-a|+|x|在区间[0,+∞)上为增函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a,b∈R,则命题“若a+b=1,则a2+b2≥$\frac{1}{2}$”的逆否命题是(  )
A.若a+b≠1,则a2+b2<$\frac{1}{2}$B.若a+b=1,则a2+b2<$\frac{1}{2}$
C.若a2+b2<$\frac{1}{2}$,则a+b≠1D.若a2+b2≥$\frac{1}{2}$,则a+b=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{5}|x-3|,(x≠3)}\\{3,(x=3)}\end{array}\right.$,若函数F(x)=f2(x)+bf(x)+c有五个不同的零点x1,x2,…,x5,则f(x1+x2+…+x5)=log512.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知抛物线x2=2y上三点A,B,C,且A(-2,2),AB⊥BC,当点B移动时,点C的横坐标的取值范围是(  )
A.(-∞,-6]∪[2,+∞)B.(-∞,-4)∪(4,+∞)C.[2,+∞)D.[-6,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某市为鼓励居民节约用水,拟实行阶梯水价,每人用水量中不超过w 立方米按2 元/立方米收费,超出w 立方米但不高于w+2 的部分按4 元/立方米收费,超出w+2 的部分按8 元/立方米收费,从该市随机调查了10000 位居民,获得了他们某月的用水量数据,整理得到如图所示频率分布直方图:
(1)如果w 为整数,那么根据此次调查,为使40%以上居民在该月的用水价格为2元/立方米,w 至少定为多少?
(2)假设同组中的每个数据用该组区间的右端点值代替,当w=2 时,估计该市居民该月的人均水费.

查看答案和解析>>

同步练习册答案