分析 (1)先求出f(1)=1,进而根据奇函数的性质,可得f(-1)=-f(1);
(2)根据已知可得f(x)为奇函数,可得f(0)=0,当x<0时,-x>0,f(x)=-f(-x)得到x<0时,f(x)的解析式,综合可得答案.
解答 解:(1)∵当x>0时,f(x)=2x-1,
∴f(1)=1,
又∵函数f(x)是定义在R上的奇函数,
∴f(-1)=-f(1)=-1;
(2)当x<0时,-x>0,
f(x)=-f(-x)=-2-x+1,
当x=0时,
f(0)=0,
∴f(x)=$\left\{\begin{array}{l}-{2}^{-x}+1,x<0\\ 0,x=0\\{2}^{x}-1,x>0\end{array}\right.$.
点评 本题考查的知识点是函数奇偶性的性质,熟练掌握函数奇偶性的性质,是解答的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=x+$\frac{1}{x}$ | B. | y=sinx+$\frac{1}{sinx}({0<x<\frac{π}{2}})$ | ||
C. | y=3x+3-x | D. | y=lgx+$\frac{1}{lgx}({1<x<10})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com