精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)= ﹣k( +lnx)(k为常数,e=2.71828…是自然对数的底数). (Ⅰ)当k≤0时,求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.

【答案】解:(Ⅰ)f(x)的定义域为(0,+∞), ∴f′(x)= ﹣k(
= (x>0),
当k≤0时,kx≤0,
∴ex﹣kx>0,
令f′(x)=0,则x=2,
∴当0<x<2时,f′(x)<0,f(x)单调递减;
当x>2时,f′(x)>0,f(x)单调递增,
∴f(x)的单调递减区间为(0,2),单调递增区间为(2,+∞).
(Ⅱ)由(Ⅰ)知,k≤0时,函数f(x)在(0,2)内单调递减,
故f(x)在(0,2)内不存在极值点;
当k>0时,设函数g(x)=ex﹣kx,x∈(0,+∞).
∵g′(x)=ex﹣k=ex﹣elnk
当0<k≤1时,
当x∈(0,2)时,g′(x)=ex﹣k>0,y=g(x)单调递增,
故f(x)在(0,2)内不存在两个极值点;
当k>1时,
得x∈(0,lnk)时,g′(x)<0,函数y=g(x)单调递减,
x∈(lnk,+∞)时,g′(x)>0,函数y=g(x)单调递增,
∴函数y=g(x)的最小值为g(lnk)=k(1﹣lnk)
函数f(x)在(0,2)内存在两个极值点
当且仅当
解得:e
综上所述,
函数f(x)在(0,2)内存在两个极值点时,k的取值范围为(e,
【解析】(Ⅰ)求出导函数,根据导函数的正负性,求出函数的单调区间;(Ⅱ)函数f(x)在(0,2)内存在两个极值点,等价于它的导函数f′(x)在(0,2)内有两个不同的零点.
【考点精析】通过灵活运用利用导数研究函数的单调性和函数的极值,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;极值反映的是函数在某一点附近的大小情况即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某单位安排位员工在春节期间大年初一到初七值班,每人值班天,若位员工中的甲、乙排在相邻的两天,丙不排在初一,丁不排在初七,则不同的安排方案共有_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分) 某中学的环保社团参照国家环境标准制定了该校所在区域空气质量指数与空气质量等级对应关系如下表(假设该区域空气质量指数不会超过):

空气质量指数

空气质量等级

级优

级良

级轻度污染

级中度污染

级重度污染

级严重污染

该社团将该校区在天的空气质量指数监测数据作为样本,绘制的频率分布直方图如下图,把该直方图所得频率估计为概率

请估算年(以天计算)全年空气质量优良的天数(未满一天按一天计算)

)该校日将作为高考考场,若这两天中某天出现级重度污染,需要净化空气费用元,出现级严重污染,需要净化空气费用元,记这两天净化空气总费用为元,求的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x),g(x)的定义域都是D,直线x=x0(x0∈D),与y=f(x),y=g(x)的图象分别交于A,B两点,若|AB|的值是不等于0的常数,则称曲线 y=f(x),y=g(x)为“平行曲线”,设f(x)=ex﹣alnx+c(a>0,c≠0),且y=f(x),y=g(x)为区间(0,+∞)的“平行曲线”,g(1)=e,g(x)在区间(2,3)上的零点唯一,则a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,在处的切线方程为.

(1)求

(2)若,证明: .

【答案】(1) ;(2)见解析

【解析】试题分析:1)求出函数的导数,得到关于 的方程组,解出即可;

(2)由(1)可知

,可得,令, 利用导数研究其单调性可得

从而证明.

试题解析:((1)由题意,所以

,所以

,则,与矛盾,故 .

(2)由(1)可知

,可得

时, 单调递减,且

时, 单调递增;且

所以上当单调递减,在上单调递增,且

.

【点睛本题考查利用函数的切线求参数的方法,以及利用导数证明不等式的方法,解题时要认真审题,注意导数性质的合理运用.

型】解答
束】
22

【题目】在平面直角坐标系中,曲线的参数方程为 为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为,若直线与曲线相切;

(1)求曲线的极坐标方程;

(2)在曲线上取两点 与原点构成,且满足,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线为参数),曲线为参数).

(1)设相交于两点,求的值;

(2)若把曲线上各点的横坐标压缩为原来的,纵坐标压缩为原来的,得到曲线,设点是曲线上的一个动点,求它到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在数列{an}中, .,n∈N*
(1)求证:1<an+1<an<2;
(2)求证:
(3)求证:n<sn<n+2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请200名同学,每人随机写下一个都小于1 的正实数对(x,y);再统计两数能与1构成钝角三角形三边的数对(x,y)的个数m;最后再根据统计数m来估计π的值.假如统计结果是m=56,那么可以估计π≈ . (用分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+1|﹣|x﹣2|.
(Ⅰ)求不等式f(x)≥1的解集;
(Ⅱ)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围.

查看答案和解析>>

同步练习册答案