精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在正方体ABCDA1B1C1D1中,EF分别为B1C1A1D1的中点.求证:平面ABB1A1与平面CDFE相交.

【答案】见解析

【解析】试题分析:由题意得ECB1B不平行,则延长CEBB1必须相交于一点,设为点H。然后证明点H为两平面的公共点,则由公理3可得平面ABB1A1与平面CDFE相交.

试题解析:

在正方体ABCDA1B1C1D1中,EB1C1的中点,

所以ECB1B不平行,

所以延长CEBB1必须相交于一点,设为点H。

所以HECHB1B

B1B平面ABB1A1CE平面CDFE

所以H∈平面ABB1A1H∈平面CDFE

所以点H为平面ABB1A1与平面CDFE的公共点,

所以平面ABB1A1与平面CDFE相交.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲、乙、丙面试合格的概率分别是 ,且面试是否合格互不影响.求:

(1)至少有1人面试合格的概率;

(2)签约人数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:三棱柱的所有棱长均相等,的中点.

(1)求证:平面⊥平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中错误的是( )

A. 如果平面外的直线不平行于平面,则平面内不存在与平行的直线

B. 如果平面平面,平面平面,那么直线平面

C. 如果平面平面,那么平面内所有直线都垂直于平面

D. 一条直线与两个平行平面中的一个平面相交,则必与另一个平面相交

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.

(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;

(2)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点处的切线方程为

(1)求的解析式;

(2)求的单调区间;

(3)若函数在定义域内恒有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“菊花”型烟花是最壮观的烟花之一,制造时一般是期望在它达到最高点时爆裂.通过研究,发现该型烟花爆裂时距地面的高度(单位:米)与时间(单位:秒)存在函数关系,并得到相关数据如表:

时间

1

高度

(1)根据表中数据,从下列函数中选取一个函数描述该型烟花爆裂时距地面的高度与时间的变化关系: ,确定此函数解析式并简单说明理由;

(2)利用你选取的函数,判断烟花爆裂的最佳时刻,并求此时烟花距地面的高度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥ABCD中,AB⊥平面BCDCD⊥BD .

1)求证:CD⊥平面ABD

2)若ABBDCD1MAD中点,求三棱锥AMBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为,且乙投球3次均未命中的概率为,甲投球未命中的概率恰是乙投球未命中的概率的2倍. 

(Ⅰ)求乙投球的命中率

(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为,求的分布列和数学期望.

查看答案和解析>>

同步练习册答案