精英家教网 > 高中数学 > 题目详情
已知命题p:?x0∈R,ex-mx=0,q:?x∈R,x2+mx+1≥0,若p∨(?q)为假命题,则实数m的取值范围是(  )
A、(-∞,0)∪(2,+∞)B、[0,2]C、RD、∅
分析:根据复合函数的真假关系,确定命题p,q的真假,利用函数的性质分别求出对应的取值范围即可得到结论.
解答:解:若p∨(?q)为假命题,则p,?q都为假命题,即p是假命题,q是真命题,
由ex-mx=0得m=
ex
x

设f(x)=
ex
x
,则f′(x)=
ex•x-ex
x2
=
(x-1)ex
x2

当x>1时,f′(x)>0,此时函数单调递增,
当0<x<1时,f′(x)<0,此时函数单调递递减,
当x<0时,f′(x)<0,此时函数单调递递减,
∴当x=1时,f(x)=
ex
x
取得极小值f(1)=e,
∴函数f(x)=
ex
x
的值域为(-∞,0)∪[e,+∞),
∴若p是假命题,则0≤m<e;
若q是真命题,则由x2+mx+1≥0,则△=m2-4≤0,解得-2≤m≤2,
综上
0≤m<e
-2≤m≤2
,解得0≤m≤2.
故选:B.
点评:本题主要考查复合命题之间的关系,利用函数的性质求出相应的取值范围是解决本题的关键,综合性较强,有一定的难度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:?x0∈R,使得x02+(a-1)x0+1<0,命题q:y=x2-ax在区间[1,+∞)没有极值,若p或q为真,p且q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:?x0∈[-1,1],满足x02+x0-3a≥0,q:y=(2a-1)x为减函数.若命题p∧q 为真命题,则实数a的取值范围
1
2
<a
2
3
1
2
<a
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南充一模)已知命题p:?x0R+,log2x0=1,则?p是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x0∈R,sinx0≥1,则有(  )
A、?p:;?x0∈R,sinx0<1B、?p:?x∈R,sinx<1C、?p:?x∈R,sinx≤1D、?p:?x∈R,sinx>1

查看答案和解析>>

同步练习册答案