精英家教网 > 高中数学 > 题目详情

【题目】已知函数 的一段图像如图所示.

(1)求此函数的解析式;

(2)求此函数在上的单调递增区间.

【答案】(1);(2).

【解析】

根据三角函数的图象求出,即可确定出函数的解析式

根据函数的表达式,即可求出函数的单调递增区间

(1)由图可知,其振幅为A=2

由于

所以周期为T=16,

所以

此时解析式为

因为点(2,-2)在函数的图象上,

所以所以

又|φ|<π,所以

故所求函数的解析式为

(2)由,得16k+2≤x≤16k+10(k∈Z),

所以函数的递增区间是[16k+2,16k+10](k∈Z).

k=-1时,有递增区间[-14,-6],当k=0时,有递增区间[2,10],

与定义区间求交集得此函数在(-2π,2π)上的递增区间为(-2π,-6]和[2,2π).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 在x=1处取得极值.
(1)求函数y=f(x)的单调区间;
(2)当x∈[1,+∞)时,f(x)≥ 恒成立,求实数m的取值范围;
(3)当n∈N* , n≥2时,求证:nf(n)<2+ + +…+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间和最小值;

(2)若函数上的最小值为,求的值;

(3)若,且对任意恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】旅行社为某旅行团包飞机去旅游,其中旅行社的包机费为元.旅行团中的每个人的飞机票按以下方式与旅行社结算:若旅行团的人数不超过人时,飞机票每张收费元;若旅行团的人数多于人时,则予以优惠,每多人,每个人的机票费减少元,但旅行团的人数最多不超过人.设旅行团的人数为人,飞机票价格元,旅行社的利润为元.

(1)写出飞机票价格元与旅行团人数之间的函数关系式;

(2)当旅行团人数为多少时,旅行社可获得最大利润?求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足 ,则{an}的前50项的和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中不正确的是( )

A. 对于线性回归方程,直线必经过点

B. 茎叶图的优点在于它可以保存原始数据,并且可以随时记录

C. 将一组数据中的每一个数据都加上或减去同一常数后,方差恒不变

D. 掷一枚均匀硬币出现正面向上的概率是,那么一枚硬币投掷2次一定出现正面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查高中生的数学成绩与学生自主学习时间之间的相关关系,某重点高中数学教师对新入学的45名学生进行了跟踪调查,其中每周自主做数学题的时间不少于15小时的有19人,余下的人中,在高三模拟考试中数学平均成绩不足120分的占 ,统计成绩后,得到如下的2×2列联表:

分数大于等于120分

分数不足120分

合计

周做题时间不少于15小时

4

19

周做题时间不足15小时

合计

45

(Ⅰ)请完成上面的2×2列联表,并判断能否在犯错误的概率不超过0.01的前提下认为“高中生的数学成绩与学生自主学习时间有关”;
(Ⅱ)( i)按照分层抽样的方法,在上述样本中,从分数大于等于120分和分数不足120分的两组学生中抽取9名学生,设抽到的不足120分且周做题时间不足15小时的人数是X,求X的分布列(概率用组合数算式表示);
( ii)若将频率视为概率,从全校大于等于120分的学生中随机抽取20人,求这些人中周做题时间不少于15小时的人数的期望和方差.
附:

P(K2≥k0

0.050

0.010

0.001

k0

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的渐近线方程为,左焦点为F,过的直线为原点到直线的距离是

(1)求双曲线的方程;

(2)已知直线交双曲线于不同的两点CD,问是否存在实数,使得以CD为直径的圆经过双曲线的左焦点F。若存在求出m的值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ln23x﹣2a(x+3ln3x)+10a2 , 若存在x0使得 成立,则实数a的值为( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案