精英家教网 > 高中数学 > 题目详情

【题目】已知向量 =(3,0), =(﹣5,5), =(2,k)
(1)求向量 的夹角;
(2)若 ,求k的值;
(3)若 ⊥( ),求k的值.

【答案】
(1)解:设向量向量 的夹角为θ,

=(3,0), =(﹣5,5),

=3×(﹣5)+0×5=﹣15,| |= =3,| |=5

∴cosθ= = =﹣

又∵θ∈[0,π],


(2)解:∵

∴﹣5k=5×2,

∴k=﹣2


(3)解:∵ =(5,k),

⊥( ),

)=0,

∴﹣5×5+5k=0,

∴k=5


【解析】(1)根据向量的坐标运算和向量的夹角公式即可求出,(2)根据向量的平行的条件得到﹣5k=5×2,解得即可,(3)根据向量的垂直的条件得到﹣5×5+5k=0,解得即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆Cx2y22x4y40

1)求圆C关于直线对称的圆的方程;

2)问是否存在斜率为1的直线l,使l被圆C截得弦AB,且以AB为直径的圆经过点?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)选修4—4:坐标系与参数方程

在直角坐标系xOy中,圆C的参数方程为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.

1)求圆C的极坐标方程;

2)直线的极坐标方程是,射线与圆C的交点为OP,与直线的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的前n项和Sn满足:2Sn=3an﹣6n(n∈N*) (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设 ,其中常数λ>0,若数列{bn}为递增数列,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的中心在原点,焦点F1F2在坐标轴上,离心率为且过点(4,- )

(1)求双曲线方程;

(2)若点M(3m)在双曲线上,求证:点M在以F1F2为直径的圆上;

(3)求△F1MF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【天津市红桥区重点中学八校2017届高三4月联考数学(文)】已知椭圆的中心在原点,离心率等于,它的一个短轴端点恰好是抛物线的焦点

(1)求椭圆的方程;

(2)已知是椭圆上的两点, 是椭圆上位于直线两侧的动点.①若直线的斜率为,求四边形面积的最大值;

②当 运动时,满足,试问直线的斜率是否为定值,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2016高考北京文数】某市居民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费.从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:

(I)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?

(II)假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“丁香”和“小花”是好朋友,她们相约本周末去爬歌乐山,并约定周日早上8:00至8:30之间(假定她们在这一时间段内任一时刻等可能的到达)在歌乐山健身步道起点处会合,若“丁香”先到,则她最多等待“小花”15分钟.若“小花”先到,则她最多等待“丁香”10分钟,若在等待时间内对方到达,则她俩就一起快乐地爬山,否则超过等待时间后她们均不再等候对方而孤独爬山,则“丁香”和“小花”快乐地一起爬歌乐山的概率是(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】写出下列命题的否定,并判断其真假:

(1)p:末位数字为9的整数能被3整除;

(2)p:有的素数是偶数;

(3)p:至少有一个实数x,使x210

(4)pxyRx2y22x4y50.

查看答案和解析>>

同步练习册答案