精英家教网 > 高中数学 > 题目详情

【题目】数列是等比数列,公比大于0,前项和是等差数列,已知

(Ⅰ)求数列的通项公式

(Ⅱ)设的前项和为

(ⅰ)求

(ⅱ)若,记,求的取值范围.

【答案】(Ⅰ);(Ⅱ)(i;(ii

【解析】

(Ⅰ)由等比数列的定义求得公比,得通项公式,再由等差数列的定义求得,得

(Ⅱ)(ⅰ)由等比数列前项和公式求得,由分组求和法求得,(ⅱ)求得后,用裂项相消法求得,结合函数性质可得取值范围.

解:(Ⅰ)设数列的公比为,因为,可得,整理得

解得(舍 ,所以数列通项公式为

设数列的公差为,因为,即,解得

所以数列的通项公式为

(Ⅱ)(ⅰ)由等比数列的前项和公式可得

所以

(ⅱ)由(ⅰ)可得

所以的前项和

上是递增的,

所以的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】分别是椭圆的左、右焦点,两点分别是椭圆的上、下顶点,是等腰直角三角形,延长交椭圆点,且的周长为.

1)求椭圆的方程;

2)设点是椭圆上异于的动点,直线与直线分别相交于两点,点,试问:外接圆是否恒过轴上的定点(异于点)?若是,求该定点坐标;若否,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象在它们的交点处具有相同的切线.

1)求的解析式;

2)若函数有两个极值点,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等比数列中,已知设数列的前n项和为,且

1)求数列通项公式;

2)证明:数列是等差数列;

3)是否存在等差数列,使得对任意,都有?若存在,求出所有符合题意的等差数列;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,直线的极坐标方程为

(Ⅰ)求曲线的普通方程与直线的直角坐标方程;

(Ⅱ)若与平行的直线与曲线交于两点.且在轴的截距为整数,的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)求函数的最小正周期和单调递增区间;

2)当时,的最大值为2,求的值,并求出的对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)当时,求证:

(2)若有三个零点时,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在定义域内有两个不同的极值点.

1)求的取值范围;

2)设两个极值点分别为:,证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱柱中底面边长为2,高为3DE分别在上,且.

1AE上是否存在一点P,使得?若不存在,说明理由;若存在,指出P的位置;

2)求点到截面ADE的距离.

查看答案和解析>>

同步练习册答案