精英家教网 > 高中数学 > 题目详情

在调查男女乘客是否晕机的情况中,已知男乘客晕机为28人,不会晕机的也是28人,而女乘客晕机为28人,不会晕机的为56人,
(1)根据以上数据建立一个的列联表;(2)能否在犯错误的概率不超过0.05的前提下认为晕机与性别有关?

(1)2×2列联表如下:

 
晕机
不晕机
合计
男乘客
28
28
56
女乘客
28
56
84
合计
56
84
140
                   
(2)犯错误的概率不超过0.05的前提下我们认为是“晕机与性别”有关,

解析试题分析:
1)解:2×2列联表如下:

 
晕机
不晕机
合计
男乘客
28
28
56
女乘客
28
56
84
合计
56
84
140
                                                              5分
(2)假设是否晕机与性别无关,则 的观测值                   6分                                     
>3.841                  10分
                                     11分
所以在犯错误的概率不超过0.05的前提下我们认为是“晕机与性别”有关,  12分
考点:独立性检验
点评:考查了独立性检验判定分类变量的有无关系,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某种报纸,进货商当天以每份进价元从报社购进,以每份售价元售出。若当天卖不完,剩余报纸报社以每份元的价格回收。根据市场统计,得到这个季节的日销售量(单位:份)的频率分布直方图(如图所示),将频率视为概率。

(Ⅰ)求频率分布直方图中的值;
(Ⅱ)若进货量为(单位:份),当时,求利润的表达式;
(Ⅲ)若当天进货量,求利润的分布列和数学期望(统计方法中,同一组数据常用该组区间的中点值作为代表).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校的研究性学习小组为了研究高中学生的身体发育状况,在该校随机抽出120名17至18周岁的男生,其中偏重的有60人,不偏重的也有60人。在偏重的60人中偏高的有40人,不偏高的有20人;在不偏重的60人中偏高和不偏高人数各占一半
(1)根据以上数据建立一个列联表:

 
偏重
不偏重
合计
偏高
 
 
 
不偏高
 
 
 
合计
 
 
 
(2)请问该校17至18周岁的男生身高与体重是否有关?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某市调研考试后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.

 
优秀
非优秀
合计
甲班
10
 
 
乙班
 
30
 
合计
 
 
110
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.附: 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样调查,测得身高情况的统计图如下:

(Ⅰ)估计该校男生的人数;
(Ⅱ)估计该校学生身高在170~185 cm之间的概率;
(Ⅲ)从样本中身高在180~190 cm之间的男生中任选2人,求至少有1人身高在185~190 cm之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

我校高三年级进行了一次水平测试.用系统抽样的方法抽取了50名学生的数学成绩,准备进行分析和研究.经统计成绩的分组及各组的频数如下:
[40,50), 2;   [50,60), 3;  [60,70), 10;  [70,80), 15;   [80,90), 12;  [90,100], 8.
(Ⅰ)完成样本的频率分布表;画出频率分布直方图.
(Ⅱ)估计成绩在85分以下的学生比例;
(Ⅲ)请你根据以上信息去估计样本的众数、中位数、平均数.(精确到0.01)
频率分布表                       频率分布直方图
     

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在研究色盲与性别的关系调查中,调查了男性480人,其中有38人患色盲,调查的520名女性中有6人患色盲.
(1)根据以上数据建立一个2×2列联表;

 
患色盲
不患色盲
总计

 
442
 

6
 
 
总计
44
956
1000
(2)若认为“性别与患色盲有关系”,则出错的概率会是多少?
随机变量
附临界值参考表:
P(K2x0)
0.10
0.05
0.025
0.10
0.005
0.001
x0
2.706
3.841
5.024
6.635
7.879
10.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某种产品的广告费用支出(百万)与销售额(百万)之间有如下的对应数据:


2
4
5
6
8

30
40
60
50
70
(1)画出散点图;
(2)求回归直线方程;
(3)据此估计广告费用为10(百万)时,销售收入的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六组[40,50),[50,60) ...[90,100]后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:

(Ⅰ)求成绩落在[70,80)上的频率,并补全这个频率分布直方图;
(Ⅱ) 估计这次考试的及格率(60分及以上为及格)和平均分;
(Ⅲ) 从成绩是70分以上(包括70分)的学生中选两人,求他们在同一分数段的概率.

查看答案和解析>>

同步练习册答案