【题目】已知椭圆的离心率为,且以原点为圆心,椭圆的焦距为直径的圆与直线相切(为常数).
(1)求椭圆的标准方程;
(2)如图,若椭圆的左、右焦点分别为,过作直线与椭圆分别交于两点,求的取值范围.
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足an+1=a ﹣nan+1,且a1=2.
(1)计算a2 , a3 , a4的值,由此猜想数列{an}的通项公式,并用数学归纳法证明;
(2)求证:2nn≤a <3nn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=( + )x3(a>0,a≠1).
(1)讨论函数f(x)的奇偶性;
(2)求a的取值范围,使f(x)+f(2x)>0在其定义域上恒成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图为函数图像的一部分,其中点是图像的一个最高点,点是与点相邻的图像与轴的一个交点.
⑴ 求函数的解析式;
⑵ 若将函数的图像沿轴向右平移个单位,再把所得图像上每一点的横坐标都变为原来的(纵坐标不变),得到函数的图像,求函数的单调递增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,游乐场中摩天轮匀速逆时针旋转,每转一圈需要6min,其中心距离地面40.5m,摩天轮的半径为40m,已知摩天轮上点P的起始位置在最低点处,在时刻t(min)时点P距离地面的高度为f(t)=Asin(wt+φ)+h(A>0,w>0,﹣π<φ<0,t≥0).
(1)求f(t)的单调区间;
(2)求证:f(t)+f(t+2)+f(t+4)是定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方体ABCD﹣A1B1C1D1中,M、N分别为棱C1D1、C1C的中点,有以下四个结论: ①直线AM与CC1是相交直线;
②直线AM与BN是平行直线;
③直线BN与MB1是异面直线;
④直线AM与DD1是异面直线.
其中正确的结论为(注:把你认为正确的结论的序号都填上).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平行四边形ABCD中,A(1,1)、B(7,3)、D(4,6),点M是线段AB的中点线段CM与BD交于点P.
(1)求直线CM的方程;
(2)求点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2013年第三季度,国家电网决定对城镇居民用电计费标准作出调整,并根据用电情况将居民分为三类:第一类的用电区间在(0,170],第二类在(170,260],第三类在(260,+∞)(单位:千瓦时).某小区共有1000户居民,现对他们的用电情况进行调查,得到频率分布直方图,如图所示.
(1)求该小区居民用电量的中位数与平均数;
(2)本月份该小区没有第三类的用电户出现,为鼓励居民节约用电,供电部门决定:对第一类每户奖励20元钱,第二类每户奖励5元钱,求每户居民获得奖励的平均值;
(3)利用分层抽样的方法从该小区内选出5位居民代表,若从该5户居民代表中任选两户居民,求这两户居民用电资费属于不同类型的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数y与听课时间x(单位:分钟)之间的关系满足如图所示的图象,当x∈(0,12]时,图象是二次函数图象的一部分,其中顶点A(10,80),过点B(12,78);当x∈[12,40]时,图象是线段BC,其中C(40,50).根据专家研究,当注意力指数大于62时,学习效果最佳.
(1)试求y=f(x)的函数关系式;
(2)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com