精英家教网 > 高中数学 > 题目详情

(本小题满分12分)

某公园的大型中心花园的边界为椭圆,花园内种植各种花草. 为增强观赏性,在椭圆内以其

中心为直角顶点且关于中心对称的两个直角三角形内种植名贵花草(如图),并以该直角三角

形斜边开辟观赏小道(其中的一条为线段). 某园林公司承接了该中心花园的施工建设,

在施工时发现,椭圆边界上任意一点到椭圆两焦点的距离和为4(单位:百米),且椭圆上点

到焦点的最近距离为1(单位:百米).

(Ⅰ)以椭圆中心为原点建立如图的坐标系,求该椭圆的标准方程;

(Ⅱ)请计算观赏小道的长度(不计小道宽度)的最大值.

 

 

 

 

 

 

 

 

 

 

【答案】

 

解:(Ⅰ) 设椭圆的方程为+=1(a>b>0),

由已知,2a=4,ac=1,a=2,c=1,

b=,故椭圆的标准方程+=1.……3分

(Ⅱ)①若该直角三角形斜边斜率存在且不为0,

设直角三角形斜边所在直线方程为ykxm,斜边与椭圆的交点A(x1y1),B(x2y2),

联立方程组         y=kx+m

                    +=1

得3x2+4(kxm)2=12,即(3+4k2)x2+8kmx+4m2-12=0,

则Δ=64k2m2-4(3+4k2)(4m2-12)=48(4k2m2+3)>0,即4k2m2+3>0.

x1+ x2= -  8km

3+4k2

x1 x2=    ,         …………6分

y1y2=(kx1m)(kx2m)=k2x1x2km(x1x2)+m2k2-+m2

=,

要使△AOB为直角三角形,需使x1x2y1y2=0,

即+=0,所以7m2-12k2-12=0, …………8分

m2=,故4k2m2+3=4k2+3-=>0,

所以|AB|===

==

=≤.

当仅当16k2=,k=±时,等号成立. …………10分

②若该直角三角形斜率不存在或斜率为0,则斜边长为.

综上可知,观赏小道长度的最大值为2(百米). …………12分

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案