精英家教网 > 高中数学 > 题目详情

【题目】设函数,记.

1)求曲线处的切线方程;

2)求函数的单调区间;

3)当时,若函数没有零点,求的取值范围.

【答案】1曲线处的切线方程2时,函数的增区间是,当时,函数的增区间是,减区间是;(3)实数的取值范围为.

【解析】

试题分析:1求曲线处的切线方程,由导数的几何意义得,对函数求导得,既得函数处的切线的斜率为,又,得切点,由点斜式可得切线方程;2求函数的单调区间,由题意得,,求函数的单调区间,先确定函数的定义域为,由于含有对数函数,可对函数求导得,,由于含有参数,需对讨论,分两种情况,从而得函数的单调区间3时,若函数没有零点,即无解,由(2)可知,当时,函数的最大值为,只要小于零即可,由此可得的取值范围.

试题解析:(1),则函数处的切线的斜率为.

所以函数处的切线方程为,即 4分

2,().

时,在区间上单调递增;

时,令,解得;令,解得.

综上所述,当时,函数的增区间是

时,函数的增区间是,减区间是. 9分

3)依题意,函数没有零点,即无解.

由(2)知,当时,函数在区间上为增函数,区间上为减函数,

由于,只需

解得.

所以实数的取值范围为. 13分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数的图象在点处的切线方程为,求的值;

(2)当时,在区间上至少存在一个,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的前n项和记为Sn , a1=t,an+1=2Sn+1(n∈N*).
(1)当t为何值时,数列{an}为等比数列?
(2)在(1)的条件下,若等差数列{bn}的前n项和Tn有最大值,且T3=15,又a1+b1 , a2+b2 , a3+b3成等比数列,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)在(﹣1,+∞)上单调,且函数y=f(x﹣2)的图象关于x=1对称,若数列{an}是公差不为0的等差数列,且f(a50)=f(a51),则{an}的前100项的和为(
A.﹣200
B.﹣100
C.0
D.﹣50

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

已知圆的参数方程为为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.

(1)求直线的普通方程和圆的极坐标方程;

(2)求直线与圆的交点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别是角A,B,C的对边,b= sinB,且满足tanA+tanC= . (Ⅰ)求角C和边c的大小;
(Ⅱ)求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是正方形,侧棱底面的中点,求证:

(1)平面

(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,函数.

(1)求函数的对称中心;

(2)设锐角三个内角所对的边分别为,若和c

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校600名文科学生参加了425日的三调考试,学校为了了解高三文科学生的数学、外语情况,利用随机数表法从抽取100名学生的成绩进行统计分析,将学生编号为000,001,002,…599

12 56 85 99 26 96 96 68 27 31 05 03 72 93 15 57 12 10 14 21 88 26 49 81 76

55 59 56 35 64 38 54 82 46 22 31 62 43 09 90 06 18 44 32 53 23 83 01 30 30

16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64

84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76

(1)若从第6行第7列的数开始右读,请你一次写出最先抽出的5个人的编号(上面是摘自随机数表的第4行到第7行);

(2)抽出的100名学生的数学、外语成绩如下表:

外语

及格

数学

8

m

9

9

n

11

及格

8

9

11

若数学成绩优秀率为35%,求m,n的值;

(3)在外语成绩为良的学生中,已知m≥12,n≥10,求数学成绩优比良的人数少的概率.

查看答案和解析>>

同步练习册答案