精英家教网 > 高中数学 > 题目详情
如图所示,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,PD⊥底面ABCD,且PD=a,PA=PC=
2
a

(1)求证:点A在PA为直径的圆上;
(2)若在这个四棱锥内放一球,求此球的最大半径.
考点:球的体积和表面积,棱锥的结构特征
专题:综合题,空间位置关系与距离
分析:(1)证明PD⊥AD,可得点A在PA为直径的圆上;
(2)设此球半径为R,最大的球应与四棱锥各个面都相切,利用等体积,即可得出结论.
解答: (1)证明:∵PD⊥底面ABCD,
∴PD⊥AD,
∴点A在PA为直径的圆上;
(2)解:设此球半径为R,最大的球应与四棱锥各个面都相切,设球心为S,连结SA、SB、SC、SD、SP,则把此四棱锥分为五个棱锥,设它们的高均为R.
VP-ABCD=
1
3
•SABCD•PD=
1
3
•a•a•a=
1
3
a3
S△PAD=S△PDC=
1
2
a2
S△PAB=S△PBC=
1
2
•a•
2
a=
2
2
a2

SABCD=a2
VP-ABCD=VS-PDA+VS-PDC+VS-ABCD+VS-PAB+VS-PBC
1
3
a3=
1
3
R(S△PAD+S△PDC+S△PAB+S△PBC+SABCD),
R
3
(2+
2
)a2
=
1
3
a3

∴R=(1-
2
2
)a,
∴球的最大半径是(1-
2
2
)a.
点评:本题考查线面垂直的性质,考察体积的计算,考察学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

化简:sin6α+cos6α+3sin2α•cos2α=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正三角形ABC中,
内切圆半径
外接圆半径
=
OD
OA
=
OD
AD-OD
=
OD
AD
1-
OD
AD
,而
OD
AD
=
S△OBC
S△ABC
=
1
3
,所以
内切圆半径
外接圆半径
=
1
2
.应用类比推理,在正四面体ABCD(每个面都是正三角形的四面体)中,
内切球的半径r
外接球的半径R
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)为R上的偶函数,若对任意的x1、x2∈(-∞,0](x1≠x2),都有
f(x2)-f(x1)
x2-x1
>0,则(  )
A、f(-2)<f(1)<f(3)
B、f(1)<f(-2)<f(3)
C、f(3)<f(-2)<f(1)
D、f(3)<f(1)<f(-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,矩形ABCD中,点E为边CD的中点,若在矩形中随机撒一粒黄豆,则黄豆落在△ABE内的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=8x的焦点F到双曲线C:
y2
a2
-
x2
b2
=1(a>0,b>0)渐近线的距离为
4
5
5
,点P是抛物线y2=8x上的一动点,P到双曲线C的上焦点F1(0,c)的距离与到直线x=-2的距离之和的最小值为3,则该双曲线的方程为(  )
A、
y2
2
-
x2
3
=1
B、
y2
4
-x2=1
C、y2-
x2
4
=1
D、
y2
3
-
x2
2
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
1
2
ax2+x,a∈R.
(1)当a=1时,求在点(1,f(1))处的切线方程;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

若双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率为
3
,则椭圆
x2
a2
+
y2
b2
=1的离心率为(  )
A、
1
2
B、
3
3
C、
2
2
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

一条光线从原点(0,0)射到直线l:2x-y+5=0上,再经反射后过B(1,3),求反射光线所在直线的方程.

查看答案和解析>>

同步练习册答案