精英家教网 > 高中数学 > 题目详情

【题目】已知函数若对任意的实数x1x2x3,不等式fx1)+fx2>fx3)恒成立,则实数m的取值范围是( )

A.[14B.14C.D.[]

【答案】D

【解析】

根据题意任意两个函数值之和都大于另外一个函数值,考虑临界情况即最小值之和的二倍大于最大值即可,注意分析最值取得的情况.

由题,函数可变形为:

,考虑函数

根据勾型函数性质,,在递减,递增,

所以,原函数的值域等价于讨论:

的值域,

恒成立,显然满足题意;

单调递减,值域为

若对任意的实数x1x2x3,不等式fx1)+fx2>fx3)恒成立,

,解得:

单调递增,值域为

若对任意的实数x1x2x3,不等式fx1)+fx2>fx3)恒成立,

,解得:

综上所述:.

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】有限数列同时满足下列两个条件:

对于任意的),

对于任意的),三个数中至少有一个数是数列中的项.[

1)若,且,求的值;

2)证明:不可能是数列中的项;

3)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个不同的极值点x1x2,且x1x2

1)求实数a的取值范围;

2)求证:x1x2a2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,圆O的直径AB=6,C为圆周上一点,BC=3,平面PAC垂直圆O所在平面,直线PC与圆O所在平面所成角为60°,PA⊥PC.

(1)证明:AP⊥平面PBC

(2)求二面角P—AB一C的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在椭圆,直线x,y轴分别交于A,B两点,0为坐标原点,且△OAB 的面积的最小值为

(1)求椭圆的离心率;

(2) 设点C、D、F2分别为椭圆的上、下顶点以及右焦点,E 为线段OD 的中点,直线F2E 与椭圆 相交于M、N 两点,若,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】表示不大于实数的最大整数,函数,若关于的方程有且只有5个解,则实数的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线Cnx22nx+y2=0,(n=12.从点P(﹣10)向曲线Cn引斜率为knkn>0)的切线ln,切点为Pnxnyn.

(1)求数列{xn}与{yn}的通项公式;

(2)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:的长轴长为4,左、右顶点分别为,经过点的动直线与椭圆相交于不同的两点(不与点重合).

(1)求椭圆的方程及离心率;

(2)求四边形面积的最大值;

(3)若直线与直线相交于点,判断点是否位于一条定直线上?若是,写出该直线的方程. (结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就,在“杨辉三角”中,第行的所有数字之和为,若去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,…,则此数列的前15项和为( )

A. 110B. 114C. 124D. 125

查看答案和解析>>

同步练习册答案