精英家教网 > 高中数学 > 题目详情
已知关于x的函数f(x)=-
1
3
x3+bx2+cx+bc,其导函数为f′(x).令g(x)=|f′(x)|,记函数g(x)在区间[-1、1]上的最大值为M.
(Ⅰ)如果函数f(x)在x=1处有极值-
4
3
,试确定b、c的值:
(Ⅱ)若|b|>1,证明对任意的c,都有M>2
(Ⅲ)若M≧K对任意的b、c恒成立,试求k的最大值.
分析:(Ⅰ)对函数求导,由题意可得
f(1)= -
4
3
f(1)=0
,代入可求b,c,代入验证,找出符合条件的值.
(Ⅱ)(法1)代入整理g(x)=||-(x-b)2+b2+c|,结合|b|>1的条件判断函数f′(x)的对称轴与区间[-1,1]的位置关系,从而求出该函数在[-1,1]上的最大值M,则M≥f′(1),M≥f′(-1),可证
(法2)利用反证法:假设M<2,由(1)可知M应是g(-1)和g(1)中较大的一个,则有
g(1)<2
g(-1)<2
,代入课产生矛盾.
(Ⅲ)(法1)M≥k恒成立?k≤Mmin,转化为求M的最小值
当|b|>1,结合(II)讨论
|b|≤1两只情况讨论,此时M=max{g(-1),g(1),g(b)},结合条件推理论证.
(法2)仿照法1,利用二次函数在区间[-1,1]的图象及性质求出M={g(-1),g(1),g(b)},求出M的最小值,
解答:(Ⅰ)解:∵f'(x)=-x2+2bx+c,由f(x)在x=1处有极值-
4
3

可得
f′(1)=-1+2b+c=0
f(1)=-
1
3
+b+c+bc=-
4
3

解得
b=1
c=-1
,或
b=-1
c=3

若b=1,c=-1,则f'(x)=-x2+2x-1=-(x-1)2≤0,此时f(x)没有极值;
若b=-1,c=3,则f'(x)=-x2-2x+3=-(x+1)(x-1)
当x变化时,f(x),f'(x)的变化情况如下表:
x (-∞,-3) -3 (-3,1) 1 (1,+∞)
f'(x) - 0 + 0 -
f(x) 极小值-12 极大值-
4
3
∴当x=1时,f(x)有极大值-
4
3
,故b=-1,c=3即为所求.

(Ⅱ)证法1:g(x)=|f'(x)|=|-(x-b)2+b2+c|
当|b|>1时,函数y=f'(x)的对称轴x=b位于区间[-1.1]之外.
∴f'(x)在[-1,1]上的最值在两端点处取得
故M应是g(-1)和g(1)中较大的一个,
∴2M≥g(1)+g(-1)=|-1+2b+c|+|-1-2b+c|≥|4b|>4,即M>2

证法2(反证法):因为|b|>1,所以函数y=f'(x)的对称轴x=b位于区间[-1,1]之外,
∴f'(x)在[-1,1]上的最值在两端点处取得.
故M应是g(-1)和g(1)中较大的一个
假设M≤2,则M=maxg{(-1),g(1),g(b)}
将上述两式相加得:4≥|-1-2b+c|+|-1+2b+c|≥4|b|>4,导致矛盾,∴M>2

(Ⅲ)解法1:g(x)=|f'(x)|=|-(x-b)2+b2+c|
(1)当|b|>1时,由(Ⅱ)可知f'(b)-f'(±1)=b(?1)2≥0;
(2)当|b|≤1时,函数y=f'(x)的对称轴x=b位于区间[-1,1]内,
此时M=max{g(-1),g(1),g(b)}
由f'(1)-f'(-1)=4b,有f'(b)-f'(±1)=b(?1)2≥0
①若-1≤b≤0,则f'(1)≤f'(-1)≤f'(b),∴g(-1)≤max{g(1),g(b)},
于是M=max{|f′(1),|f′(b)|}≥
1
2
(|f′(1)|+f′(b)|)≥
1
2
|f′(1)-f′(b)|=
1
2
(b-1)2
1
2

②若0<b≤1,则f'(-1)≤f'(1)≤f'(b),∴g(1)≤maxg(-1),g(b)
于是M=max{|f′(-1)|,|f′(b)|}≥
1
2
(|f′(-1)|+|f′(b)|)≥
1
2
|f′(-1)-f′(b)|=
1
2
(b+1)2
1
2

综上,对任意的b、c都有M≥
1
2

而当b=0,c=
1
2
时,g(x)=|-x2+
1
2
|
在区间[-1,1]上的最小值M=
1
2

故M≥k对任意的b、c恒成立的k的最大值为
1
2

解法2:g(x)=|f'(x)|=|-(x-b)2+b2+c|
(1)当|b|>1时,由(Ⅱ)可知M>2
(2)当|b|≤1
y=f'(x)时,函数的对称轴x=b位于区间[-1,1]内,
此时M=max{g(-1),g(1),g(b)}
4M≥g(-1)+g(1)+2g(h)=|-1-2b+c|+|-1+2b+c|+2|b2+c|≥|-1-2b+c+(-1+2b+c)-2(b2+c)|=|2b2+2|≥2,
M≥
1
2

下同解法1
点评:本小题主要考查函数、函数的导数和不等式等基础知识,考查综合运用数学知识进行推理论证的能力和分类类讨论的思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知关于x的函数f(x)=-
1
3
x3
+bx2+cx+bc,如果函数f(x)在x=1处有极值-
4
3
,试确定b、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的函数f(x)=x2+2ax+b(其中a,b∈R)
(Ⅰ)求函数|f(x)|的单调区间;
(Ⅱ)令t=a2-b.若存在实数m,使得|f(m)|≤
1
4
与|f(m+1)|≤
1
4
同时成立,求t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的函数f(x)=mx-1,(其中m>1),设a>b>c>1,则
f(a)
a
f(b)
b
f(c)
c
的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的函数f(x)=(-2a+3b-5)x+8a-5b-1.如果x∈[-1,1]时,其图象恒在x轴的上方,则
b
a
的取值范围是
(-∞,
3
2
)∪(3,+∞)
(-∞,
3
2
)∪(3,+∞)

查看答案和解析>>

同步练习册答案