分析 (1)利用“累加求和”方法、等比数列的求和公式即可得出.
(2)利用等比数列的求和公式即可得出.
解答 解:(1)由已知,当n≥1时,an+1=(an+1-an)+(an-an-1)+…+(a2-a1)+a1+a1
=3(22n-1+22n-3+…+2)+2=22(n+1)-1.
又a1=2,
∴数列{an}的通项公式为an=22n-1.
(2)数列{an}为等比数列,首项为2,公比为4.
其前n项的和=$\frac{2({4}^{n}-1)}{4-1}$=$\frac{2}{3}({4}^{n}-1)$.
点评 本题考查了“累加求和”方法、等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{3+2\sqrt{2}}}{6}$ | B. | 1 | C. | $\frac{11}{5}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{16}{3}$ | B. | 16 | C. | 8 | D. | $\frac{{16\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{\sqrt{3}+1}{2}$ | B. | $\sqrt{6}$+1 | C. | $\sqrt{3}$+1 | D. | $\frac{\sqrt{3}+1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com